References
Adilov, Sanjar. 2021. “Generative
Pre-Training from Molecules.” ChemRxiv Preprint,
September. https://doi.org/10.26434/chemrxiv-2021-5fwjd.
Ahmad, Walid, Elana Simon, Seyone Chithrananda, Gabriel Grand, and
Bharath Ramsundar. 2022. “Chemberta-2:
Towards chemical foundation models.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2209.01712.
Ahn, Michael, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, et al. 2022. “Do as i Can, Not as i
Say: Grounding Language in Robotic Affordances.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2204.01691.
Ai, Qianxiang, Fanwang Meng, Jiale Shi, Brenden Pelkie, and Connor W
Coley. 2024. “Extracting Structured Data from Organic Synthesis
Procedures Using a Fine-Tuned Large Language Model.” Digital
Discovery 3 (9): 1822–31. https://doi.org/10.1039/d4dd00091a.
Alampara, Nawaf, Santiago Miret, and Kevin Maik Jablonka. 2024.
“MatText: Do language models need more than
text & scale for materials modeling?” arXiv
Preprint. https://doi.org/10.48550/arXiv.2406.17295.
Alampara, Nawaf, Mara Schilling-Wilhelmi, and Kevin Maik Jablonka. 2025.
“Lessons from the trenches on evaluating
machine-learning systems in materials science.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2503.10837.
Alampara, Nawaf, Mara Schilling-Wilhelmi, Martiño Rı́os-Garcı́a, Indrajeet
Mandal, Pranav Khetarpal, Hargun Singh Grover, NM Krishnan, and Kevin
Maik Jablonka. 2024. “Probing the limitations
of multimodal language models for chemistry and materials
research.” arXiv Preprint. https://doi.org/10.48550/arXiv.2411.16955.
Alberts, Bruce. 2002. Molecular Biology of the Cell. 4th ed.
Garland Science.
Alberts, Marvin, Oliver Schilter, Federico Zipoli, Nina Hartrampf, and
Teodoro Laino. 2024. “Unraveling Molecular Structure: A Multimodal
Spectroscopic Dataset for Chemistry.” arXiv Preprint. https://doi.org/10.48550/arXiv.2407.17492.
Altmäe, Signe, Alberto Sola-Leyva, and Andres Salumets. 2023.
“Artificial intelligence in scientific
writing: a friend or a foe?” Reproductive BioMedicine
Online 47 (1): 3–9. https://doi.org/10.1016/j.rbmo.2023.04.009.
Amin, Ishan, Sanjeev Raja, and Aditi Krishnapriyan. 2025. “Towards Fast, Specialized Machine Learning Force Fields:
Distilling Foundation Models via Energy Hessians.”
arXiv Preprint. https://doi.org/10.48550/arXiv.2501.09009.
Ananthanarayanan, Vaishnav, and William Thies. 2010. “BioCoder: A
Programming Language for Standardizing and Automating Biology
Protocols.” Journal of Biological Engineering 4: 13. https://doi.org/10.1186/1754-1611-4-13.
Aneesh, Anagha, Nawaf Alampara, José A. Márquez, and Kevin Maik
Jablonka. 2025. “Semantic Device Graphs for Perovskite Solar Cell
Design.” The Thirsteenth International Conference on Learning
Representations Workshop on AI for Materials Science,
ICLR-AI4MAT. https://openreview.net/forum?id=AGCClISEXL&referrer=%5Bthe%20profile%20of%20Anagha%20Aneesh%5D(%2Fprofile%3Fid%3D~Anagha_Aneesh1).
Ansari, Mehrad, and Seyed Mohamad Moosavi. 2024. “Agent-Based
Learning of Materials Datasets from the Scientific Literature.”
Digital Discovery 3 (12): 2607–17. https://doi.org/10.1039/D4DD00252K.
Ansari, Mehrad, Jeffrey Watchorn, Carla E. Brown, and Joseph S. Brown.
2024. “dZiner: Rational
Inverse Design of Materials with
AI Agents.” Arxiv Preprint,
October. https://doi.org/10.48550/arXiv.2410.03963.
Anthropic. 2025a. “Claude for Education |
Partnering with Universities on Responsible AI.” https://www.anthropic.com/education.
———. 2025b. “System Card: Claude
Opus 4 & Claude Sonnet
4.” Anthropic. https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf.
Antunes, Luis M., Keith T. Butler, and Ricardo Grau-Crespo. 2024.
“Crystal Structure Generation with Autoregressive Large Language
Modeling.” Nature Communications 15 (1). https://doi.org/10.1038/s41467-024-54639-7.
Arlt, Sören, Haonan Duan, Felix Li, Sang Michael Xie, Yuhuai Wu, and
Mario Krenn. 2024. “Meta-Designing Quantum Experiments with
Language Models.” arXiv Preprint arXiv: 2406.02470. https://doi.org/10.48550/arXiv.2406.02470.
Arús-Pous, Josep, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik
Bjerrum, Christian Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola
Engkvist. 2019. “Randomized SMILES Strings Improve the Quality of
Molecular Generative Models.” Journal of Cheminformatics
11: 1–13. https://doi.org/10.1186/s13321-019-0393-0.
Atz, Kenneth, Leandro Cotos, Clemens Isert, Maria Håkansson, Dorota
Focht, Mattis Hilleke, David F Nippa, et al. 2024. “Prospective de novo drug design with deep interactome
learning.” Nature Communications 15 (1): 3408. https://doi.org/s41467-024-47613-w.
Bai, Yuntao, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson
Kernion, Andy Jones, Anna Chen, et al. 2022. “Constitutional
AI: Harmlessness from AI
Feedback.” arXiv Preprint, December. https://doi.org/10.48550/arXiv.2212.08073.
Baillargeon, Jean-Thomas, and Luc Lamontagne. 2022. “Assessing the
Impact of Sequence Length Learning on Classification Tasks for
Transformer Encoder Models.” The Florida AI Research
Society. https://doi.org/10.32473/flairs.37.1.135283.
Balaji, Suryanarayanan, Rishikesh Magar, Yayati Jadhav, and Amir Barati
Farimani. 2023. “GPT-MolBERTa:
GPT Molecular Features
Language Model for Molecular Property
Prediction.” Arxiv Preprint arXiv:2310.03030, October.
https://doi.org/10.48550/arXiv.2310.03030.
Baral, Sami, Li Lucy, Ryan Knight, Alice Ng, Luca Soldaini, Neil T.
Heffernan, and Kyle Lo. 2025. “DrawEduMath:
Evaluating Vision Language Models with Expert-Annotated Students’
Hand-Drawn Math Images.” arXiv Preprint arXiv:
2501.14877. https://doi.org/10.48550/arXiv.2501.14877.
Barez, Fazl, Tingchen Fu, Ameya Prabhu, Stephen Casper, Amartya Sanyal,
Adel Bibi, Aidan O’Gara, et al. 2025. “Open Problems in Machine
Unlearning for AI Safety.” arXiv Preprint arXiv:
2501.04952.
Batatia, Ilyes, Philipp Benner, Yuan Chiang, Alin M Elena, Dávid P
Kovács, Janosh Riebesell, Xavier R Advincula, et al. 2023. “A foundation model for atomistic materials
chemistry.” arXiv Preprint arXiv:2401.00096. https://doi.org/10.48550/arXiv.2401.00096.
Batatia, Ilyes, D. Kov’acs, G. Simm, C. Ortner, and Gábor Csányi. 2022.
“MACE: Higher Order Equivariant Message Passing Neural Networks
for Fast and Accurate Force Fields.” Neural Information
Processing Systems. https://doi.org/10.48550/arXiv.2206.07697.
Batzner, Simon, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P.
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris
Kozinsky. 2022. “E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic
potentials.” Nature Communications 13 (1). https://doi.org/10.1038/s41467-022-29939-5.
Beltagy, Iz, Kyle Lo, and Arman Cohan. 2019. “SciBERT: A
Pretrained Language Model for Scientific Text.” Conference on
Empirical Methods in Natural Language Processing. https://doi.org/10.18653/v1/D19-1371.
Bender, Emily M, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big?” Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, 610–23.
https://doi.org/10.1145/3442188.3445922.
Bengio, Yoshua, Sören Mindermann, Daniel Privitera, Tamay Besiroglu,
Rishi Bommasani, Stephen Casper, Yejin Choi, et al. 2025.
“International AI Safety Report.” arXiv Preprint arXiv:
2501.17805. https://doi.org/10.48550/arXiv.2501.17805.
Bengio, Yoshua, Li Yao, Guillaume Alain, and Pascal Vincent. 2013.
“Generalized Denoising Auto-Encoders as Generative Models.”
Advances in Neural Information Processing Systems 26. https://doi.org/10.48550/arXiv.1305.6663.
Bhattacharya, Debjyoti, Harrison J. Cassady, Michael A. Hickner, and
Wesley F. Reinhart. 2024. “Large Language
Models as Molecular Design
Engines.” Journal of Chemical Information and
Modeling 64 (18): 7086–96. https://doi.org/10.1021/acs.jcim.4c01396.
Bhuiyan, Johana. 2025. “Google Undercounts Its Carbon Emissions,
Report Finds.” https://www.theguardian.com/technology/2025/jul/02/google-carbon-emissions-report.
Bjerrum, Esben Jannik. 2017. “SMILES Enumeration as Data
Augmentation for Neural Network Modeling of Molecules.” arXiv
Preprint arXiv:1703.07076. https://doi.org/10.48550/arXiv.1703.07076.
Bloomfield, Doni, Jaspreet Pannu, Alex W. Zhu, Madelena Y. Ng, Ashley
Lewis, Eran Bendavid, Steven M. Asch, Tina Hernandez-Boussard, Anita
Cicero, and Tom Inglesby. 2024. “AI and Biosecurity:
The Need for Governance.” Science 385
(6711): 831–33. https://doi.org/10.1126/science.adq1977.
Board, Nature Computational Science Editorial. 2023. “The Carbon
Footprint of Computational Research.” Nature Computational
Science 3 (8): 659–59. https://doi.org/10.1038/s43588-023-00506-2.
Boiko, Daniil A, Robert MacKnight, Ben Kline, and Gabe Gomes. 2023.
“Autonomous chemical research with large
language models.” Nature 624 (7992): 570–78. https://doi.org/10.1038/s41586-023-06792-0.
Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov.
2017. “Enriching Word Vectors with Subword Information.”
Transactions of the Association for Computational Linguistics
5: 135–46. https://doi.org/10.1162/tacl_a_00051.
Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, et al. 2021. “On the opportunities and risks of foundation
models.” arXiv Preprint arXiv:2108.07258. https://doi.org/10.48550/arXiv.2108.07258.
Bonet, Blai, and Hector Geffner. 2012. “Action Selection for MDPs:
Anytime AOversus UCT.” Proceedings of the AAAI Conference on
Artificial Intelligence 26 (1): 1749–55. https://doi.org/10.1609/aaai.v26i1.8369.
Born, Jannis, Greta Markert, Nikita Janakarajan, Talia B Kimber, Andrea
Volkamer, Marı́a Rodrı́guez Martı́nez, and Matteo Manica. 2023.
“Chemical Representation Learning for Toxicity Prediction.”
Digital Discovery 2 (3): 674–91. https://doi.org/10.1039/d2dd00099g.
Bouritsas, Giorgos, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M
Bronstein. 2022. “Improving Graph Neural Network Expressivity via
Subgraph Isomorphism Counting.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 45 (1): 657–68. https://doi.org/10.1109/TPAMI.2022.3154319.
Bran, Andres M., Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D.
White, and Philippe Schwaller. 2024. “Augmenting Large Language
Models with Chemistry Tools.” Nature Machine
Intelligence 6 (5). https://doi.org/10.1038/s42256-024-00832-8.
Breunig, Drew. 2025. “How to Fix Your Context.” https://www.dbreunig.com/2025/06/26/how-to-fix-your-context.html.
Brinkhaus, Henning Otto, Kohulan Rajan, Achim Zielesny, and Christoph
Steinbeck. 2022. “RanDepict: Random chemical
structure depiction generator.” Journal of
Cheminformatics 14 (1): 31. https://doi.org/10.1186/s13321-022-00609-4.
Brown, Nathan, Marco Fiscato, Marwin H. S. Segler, and Alain C. Vaucher.
2019. “GuacaMol: Benchmarking Models for de Novo Molecular
Design.” Journal of Chemical Information and Modeling 59
(3): 1096–1108. https://doi.org/10.1021/acs.jcim.8b00839.
Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language models are few-shot learners.”
Advances in Neural Information Processing Systems 33:
1877–1901. https://doi.org/10.48550/arXiv.2005.14165.
Bucior, Benjamin J., Andrew S. Rosen, Maciej Haranczyk, Zhenpeng Yao,
Michael E. Ziebel, Omar K. Farha, Joseph T. Hupp, J. Ilja Siepmann, Alán
Aspuru-Guzik, and Randall Q. Snurr. 2019. “Identification Schemes for Metal-Organic Frameworks To
Enable Rapid Search and Cheminformatics Analysis.”
Crystal Growth & Design 19 (11): 6682–97. https://doi.org/10.1021/acs.cgd.9b01050.
Butler, Keith T., Daniel W. Davies, Hugh Cartwright, Olexandr Isayev,
and Aron Walsh. 2018. “Machine Learning for Molecular and
Materials Science.” Nature 559 (7715): 547–55. https://doi.org/10.1038/s41586-018-0337-2.
Cai, Feiyang, Jiahui Bai, Tao Tang, Joshua Luo, Tianyu Zhu, Ling Liu,
and Feng Luo. 2025. “MolLangBench: A Comprehensive Benchmark for
Language-Prompted Molecular Structure Recognition, Editing, and
Generation.” arXiv Preprint. https://doi.org/10.48550/arxiv.2505.15054.
Cai, Hengxing, Xiaochen Cai, Junhan Chang, Sihang Li, Lin Yao, Changxin
Wang, Zhifeng Gao, et al. 2024. “SciAssess:
Benchmarking LLM Proficiency in Scientific Literature
Analysis.” arXiv Preprint arXiv: 2403.01976. https://doi.org/10.48550/arXiv.2403.01976.
Calanzone, Diego, Pierluca D’Oro, and Pierre-Luc Bacon. 2025.
“Mol-MoE: Training
Preference-Guided Routers for
Molecule Generation.” Arxiv
Preprint arXiv:2502.05633, February. https://doi.org/10.48550/arXiv.2502.05633.
Campbell, Quintina, Sam Cox, Jorge Medina, Brittany Watterson, and
Andrew D. White. 2025. “MDCrow: Automating Molecular Dynamics
Workflows with Large Language Models.” arXiv Preprint
arXiv:2502.09565. https://doi.org/10.48550/arXiv.2502.09565.
Cao, He, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li. 2023.
“InstructMol: Multi-Modal Integration for Building a Versatile and
Reliable Molecular Assistant in Drug Discovery.” arXiv
Preprint arXiv: 2311.16208. https://doi.org/10.48550/arXiv.2311.16208.
Cao, Shuxiang, Zijian Zhang, Mohammed Alghadeer, Simone D Fasciati,
Michele Piscitelli, Mustafa Bakr, Peter Leek, and Alán Aspuru-Guzik.
2024. “Agents for self-driving laboratories
applied to quantum computing.” arXiv Preprint. https://doi.org/10.48550/arXiv.2412.07978.
Cao, Zhendong, Xiaoshan Luo, Jian Lv, and Lei Wang. 2024. “Space
Group Informed Transformer for Crystalline Materials Generation.”
arXiv Preprint arXiv: 2403.15734. https://doi.org/10.48550/arXiv.2403.15734.
Cao, Zhendong, and Lei Wang. 2025.
“CrystalFormer-RL:
Reinforcement Fine-Tuning for
Materials Design.” Arxiv Preprint
arXiv:2504.02367, April. https://doi.org/10.48550/arXiv.2504.02367.
“Career Update: Google DeepMind ->
Anthropic.” 2025. https://nicholas.carlini.com/writing/2025/career-update.html.
Carlson, James, Arthur Jaffe, and Andrew Wiles, eds. 2006. The
Millennium Prize Problems. Providence, RI: American Mathematical
Society & Clay Mathematics Institute.
Caron, Mathilde, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
2018. “Deep Clustering for Unsupervised
Learning of Visual Features.” arXiv Preprint arXiv:
1807.05520. https://doi.org/10.48550/arXiv.1807.05520.
Cassani, Andrea, Alessandro Monteverde, and Marco Piumetti. 2021.
“Belousov–Zhabotinsky Type Reactions: The Non-Linear Behavior of
Chemical Systems.” Journal of Mathematical Chemistry 59
(3): 792–826. https://doi.org/10.1007/s10910-021-01223-9.
Cavanagh, Joseph M., Kunyang Sun, Andrew Gritsevskiy, Dorian Bagni,
Thomas D. Bannister, and Teresa Head-Gordon. 2024. “SmileyLlama:
Modifying Large Language Models for Directed Chemical Space
Exploration.” arXiv Preprint arXiv: 2409.02231. https://doi.org/10.48550/arXiv.2409.02231.
CERN. 2024. “CERN Publishes Its First Nuclear
Safeguards Policy.” Official News Release. https://home.cern/news/official-news/cern/cern-publishes-its-first-nuclear-safeguards-policy.
Chacko, Edwin, Rudra Sondhi, Arnav Praveen, Kylie L Luska, and Rodrigo
Alejandro Vargas Hernandez. 2024. “Spectro: A Multi-Modal Approach
for Molecule Elucidation Using IR and NMR Data.” ChemRxiv
Preprint. https://doi.org/10.26434/chemrxiv-2024-37v2j.
Chan, Jun Shern, Neil Chowdhury, Oliver Jaffe, James Aung, Dane
Sherburn, Evan Mays, Giulio Starace, et al. 2024. “Mle-Bench:
Evaluating Machine Learning Agents on Machine Learning
Engineering.” arXiv Preprint arXiv:2410.07095. https://doi.org/10.48550/arXiv.2410.07095.
Charalambous, Charithea, Elias Moubarak, Johannes Schilling, Eva Sanchez
Fernandez, Jin-Yu Wang, Laura Herraiz, Fergus Mcilwaine, et al. 2024.
“A holistic platform for accelerating
sorbent-based carbon capture.” Nature 632 (8023):
89–94. https://doi.org/10.1038/s41586-024-07683-8.
Chen, Chi, and Shyue Ping Ong. 2022. “A Universal Graph Deep
Learning Interatomic Potential for the Periodic Table.”
Nature Computational Science 2 (11): 718–28. https://doi.org/10.1038/s43588-022-00349-3.
Chen, Kexin, Hanqun Cao, Junyou Li, Yuyang Du, Menghao Guo, Xin Zeng,
Lanqing Li, Jiezhong Qiu, Pheng Ann Heng, and Guangyong Chen. 2024.
“An Autonomous Large Language Model Agent for Chemical Literature
Data Mining.” arXiv Preprint arXiv: 2402.12993. https://doi.org/10.48550/arXiv.2402.12993.
Chen, Kexin, Junyou Li, Kunyi Wang, Yuyang Du, Jiahui Yu, Jiamin Lu,
Lanqing Li, et al. 2023. “Chemist-x: Large Language
Model-Empowered Agent for Reaction Condition Recommendation in Chemical
Synthesis.” arXiv Preprint arXiv:2311.10776. https://doi.org/10.48550/arXiv.2311.10776.
Chen, Lichang, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou.
2024. “InstructZero: Efficient Instruction Optimization for
Black-Box Large Language Models.” Forty-First International
Conference on Machine Learning, ICML 2024. https://openreview.net/forum?id=rADFNrIss3.
Chen, Pengzhan, Jiean Pei, Weiqing Lu, and Mingzhen Li. 2022.
“A deep reinforcement learning based method
for real-time path planning and dynamic obstacle
avoidance.” Neurocomputing 497: 64–75. https://doi.org/10.1016/j.neucom.2022.05.006.
Chen, Richard J., Judy J. Wang, Drew F. K. Williamson, Tiffany Y. Chen,
Jana Lipkova, Ming Y. Lu, Sharifa Sahai, and Faisal Mahmood. 2023.
“Algorithmic Fairness in Artificial Intelligence for Medicine and
Healthcare.” Nature Biomedical Engineering. https://doi.org/10.1038/s41551-023-01056-8.
Chen, Weize, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min
Chan, Heyang Yu, et al. 2023. “AgentVerse: Facilitating
Multi-Agent Collaboration and Exploring Emergent Behaviors.”
arXiv Preprint. https://doi.org/10.48550/arXiv.2308.10848.
Cheng, Austin H, Andy Cai, Santiago Miret, Gustavo Malkomes, Mariano
Phielipp, and Alán Aspuru-Guzik. 2023. “Group SELFIES: A Robust
Fragment-Based Molecular String Representation.” Digital
Discovery 2 (3): 748–58. https://doi.org/10.1039/D3DD00012E.
Chennakesavalu, Shriram, Frank Hu, Sebastian Ibarraran, and Grant M.
Rotskoff. 2025. “Aligning Transformers with
Continuous Feedback via Energy
Rank Alignment.” Arxiv Preprint
arXiv:2405.12961, May. https://doi.org/10.48550/arXiv.2405.12961.
Chiang, Yuan, Elvis Hsieh, Chia-Hong Chou, and Janosh Riebesell. 2024.
“LLaMP: Large
Language Model Made
Powerful for High-fidelity
Materials Knowledge Retrieval and
Distillation.” Arxiv, October. https://doi.org/10.48550/arXiv.2401.17244.
Chirkova, Nadezhda, Thibault Formal, Vassilina Nikoulina, and Stéphane
Clinchant. 2025. “Provence: Efficient and Robust Context Pruning
for Retrieval-Augmented Generation.” arXiv Preprint. https://doi.org/10.48550/arXiv.2501.16214.
Chithrananda, Seyone, Gabriel Grand, and Bharath Ramsundar. 2020.
“ChemBERTa:
Large-Scale
Self-Supervised Pretraining for
Molecular Property
Prediction.” Arxiv, October. https://doi.org/10.48550/arXiv.2010.09885.
Choi, Jae-Woo, Youngwoo Yoon, Hyobin Ong, Jaehong Kim, and Minsu Jang.
2024. “Lota-Bench: Benchmarking Language-Oriented Task Planners
for Embodied Agents.” arXiv Preprint arXiv:2402.08178.
https://doi.org/10.48550/arXiv.2402.08178.
Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, et al. 2023. “Palm: Scaling
Language Modeling with Pathways.” Journal of Machine Learning
Research 24 (240): 1–113. https://doi.org/10.48550/arXiv.2204.02311.
Christofidellis, Dimitrios, Giorgio Giannone, Jannis Born, Ole Winther,
Teodoro Laino, and Matteo Manica. 2023. “Unifying Molecular and
Textual Representations via Multi-Task Language Modelling.”
International Conference on Machine Learning, ICML
2023, Proceedings of machine learning research, 202: 6140–57. https://doi.org/10.48550/arXiv.2301.12586.
Chu, Johan S. G., and James A. Evans. 2021. “Slowed Canonical
Progress in Large Fields of Science.” Proceedings of the
National Academy of Sciences 118 (41). https://doi.org/10.1073/pnas.2021636118.
Chuang, Kangway V, and Michael J Keiser. 2018. “Comment on
‘Predicting Reaction Performance in c–n Cross-Coupling Using
Machine Learning’.” Science 362 (6416): eaat8603.
https://doi.org/10.1126/science.aat8603.
Cissé, Abdoulatif, Xenophon Evangelopoulos, Vladimir V. Gusev, and
Andrew I. Cooper. 2025. “Language-Based Bayesian Optimization
Research Assistant (BORA).” arXiv Preprint arXiv:
2501.16224. https://doi.org/10.48550/arXiv.2501.16224.
Clune, Jeff. 2019. “AI-GAs: AI-Generating Algorithms, an Alternate
Paradigm for Producing General Artificial Intelligence.”
arXiv Preprint arXiv: 1905.10985. https://doi.org/10.48550/arXiv.1905.10985.
Coley, Connor W, Natalie S Eyke, and Klavs F Jensen. 2020.
“Autonomous Discovery in the Chemical Sciences Part i:
Progress.” Angewandte Chemie International Edition 59
(51): 22858–93. https://doi.org/10.1002/anie.201909987.
Coley, Connor W, Dale A Thomas III, Justin AM Lummiss, Jonathan N
Jaworski, Christopher P Breen, Victor Schultz, Travis Hart, et al. 2019.
“A robotic platform for flow synthesis of
organic compounds informed by AI planning.”
Science 365 (6453): eaax1566. https://doi.org/10.1126/science.aax1566.
“Common Crawl.” 2024. https://commoncrawl.org.
Conrad, Stefan, Philipp Auth, Tom Masselter, and Thomas Speck. 2025.
“Lowering the Entrance Hurdle for Lab Automation: An Artificial
Intelligence‐supported, Interactive Robotic Arm for Automated, Repeated
Testing Procedures.” Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202401086.
Corey, Elias J, Richard D Cramer III, and W Jeffrey Howe. 1972.
“Computer-assisted synthetic analysis for
complex molecules. Methods and procedures for machine generation of
synthetic intermediates.” Journal of the American
Chemical Society 94 (2): 440–59. https://doi.org/10.1021/ja00757a022.
Crawford, K. 2021. The Atlas of AI: Power, Politics,
and the Planetary Costs of Artificial Intelligence. Yale University
Press. https://books.google.de/books?id=KfodEAAAQBAJ.
Criado-Perez, Caroline. 2019. Invisible Women: Exposing Data Bias in
a World Designed for Men. Chatto & Windus.
Cunningham, Hoagy, Aidan Ewart, Logan Riggs, Robert Huben, and Lee
Sharkey. 2023. “Sparse Autoencoders Find Highly Interpretable
Features in Language Models.” arXiv Preprint arXiv:
2309.08600. https://doi.org/10.48550/arXiv.2309.08600.
Curtò, J. de, I. de Zarzà, Gemma Roig, and Carlos T. Calafate. 2024.
“Large Language Model-Informed x-Ray Photoelectron Spectroscopy
Data Analysis.” Signals 5 (2): 181–201. https://doi.org/10.3390/signals5020010.
Dagan, Gautier, Frank Keller, and Alex Lascarides. 2023. “Dynamic
Planning with a Llm.” arXiv Preprint arXiv:2308.06391.
https://doi.org/10.48550/arXiv.2308.06391.
Dagdelen, John, Alexander Dunn, Sanghoon Lee, Nicholas Walker, Andrew S
Rosen, Gerbrand Ceder, Kristin A Persson, and Anubhav Jain. 2024.
“Structured Information Extraction from Scientific Text with Large
Language Models.” Nature Communications 15 (1): 1418. https://doi.org/10.1038/s41467-024-45563-x.
Dann, Christoph, and Emma Brunskill. 2015. “Sample Complexity of
Episodic Fixed-Horizon Reinforcement Learning.” Advances in
Neural Information Processing Systems 28. https://doi.org/10.48550/arXiv.1510.08906.
Darvish, Kourosh, Marta Skreta, Yuchi Zhao, Naruki Yoshikawa, Sagnik
Som, Miroslav Bogdanovic, Yang Cao, et al. 2025. “ORGANA: A
Robotic Assistant for Automated Chemistry Experimentation and
Characterization.” Matter 8 (2). https://doi.org/10.1016/j.matt.2024.10.015.
De Luna, Phil, Jennifer Wei, Yoshua Bengio, Alán Aspuru-Guzik, and
Edward Sargent. 2017. “Use Machine Learning to Find Energy
Materials.” Nature 552 (7683): 23–27. https://doi.org/10.1038/d41586-017-07820-6.
De Moura, Leonardo, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. 2015. “The Lean theorem
prover (system description).” Automated
Deduction-CADE-25: 25th International Conference on Automated
Deduction, 378–88. https://doi.org/10.1007/978-3-319-21401-6_26.
Dean, Romeo. 2025. “Security Forecast –
AI 2027.” AI 2027. https://ai-2027.com/research/security-forecast.
Deringer, Volker L., Noam Bernstein, Gábor Csányi, Chiheb Ben Mahmoud,
Michele Ceriotti, Mark Wilson, David A. Drabold, and Stephen R. Elliott.
2021. “Origins of Structural and Electronic Transitions in
Disordered Silicon.” Nature 589 (7840): 59–64. https://doi.org/10.1038/s41586-020-03072-z.
Dettmers, Tim, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022.
“Gpt3. Int8 (): 8-Bit Matrix Multiplication for Transformers at
Scale.” Advances in Neural Information Processing
Systems 35: 30318–32. https://doi.org/10.48550/arXiv.2208.07339.
Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
2023. “Qlora: Efficient Finetuning of Quantized Llms.”
Advances in Neural Information Processing Systems 36:
10088–115. https://doi.org/10.48550/arXiv.2305.14314.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
“BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” arXiv
Preprint arXiv: 1810.04805. https://doi.org/10.48550/arXiv.1810.04805.
Dinh, Tuan, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank
Rajput, Jy-yong Sohn, Dimitris Papailiopoulos, and Kangwook Lee. 2022.
“LIFT:
Language-Interfaced
Fine-Tuning for Non-language
Machine Learning
Tasks.” Advances in Neural
Information Processing
Systems 35: 11763–84. https://doi.org/10.48550/arXiv.2206.06565.
Donker, Tjibbe. 2023. “The Dangers of Using Large Language Models
for Peer Review.” The Lancet Infectious Diseases 23 (7):
781. https://doi.org/10.1016/s1473-3099(23)00290-6.
Dotan, Ravit, and S. Milli. 2019. “Value-Laden Disciplinary Shifts
in Machine Learning.” FAT*. https://doi.org/10.1145/3351095.3373157.
Du, Yilun, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor
Mordatch. 2023. “Improving Factuality and Reasoning in Language
Models Through Multiagent Debate.” Forty-First International
Conference on Machine Learning. https://doi.org/10.48550/arXiv.2305.14325.
Du, Yuanqi, Chenru Duan, Andres Bran, Anna Sotnikova, Yi Qu, Heather
Kulik, Antoine Bosselut, Jinjia Xu, and Philippe Schwaller. 2024.
“Large Language Models are Catalyzing
Chemistry Education.” ChemRxiv Preprint, June. https://doi.org/10.26434/chemrxiv-2024-h722v.
Dung, Leonard, and Dominik Balg. 2025. “Learning Alone: Language Models, Overreliance, and the
Goals of Education.” https://philpapers.org/rec/DUNLAL-3.
Edunov, Sergey, Myle Ott, Michael Auli, and David Grangier. 2018.
“Understanding Back-Translation at Scale.” arXiv
Preprint. https://doi.org/10.48550/arXiv.1808.09381.
Edwards, Carl, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and
Heng Ji. 2022. “Translation Between Molecules and Natural
Language.” Arxiv Preprint. https://doi.org/10.48550/arXiv.2204.11817.
Edwards, Carl, ChengXiang Zhai, and Heng Ji. 2021.
“Text2Mol: Cross-Modal Molecule
Retrieval with Natural Language Queries.” Proceedings of the
2021 Conference on Empirical Methods in Natural Language
Processing, November, 595–607. https://doi.org/10.18653/v1/2021.emnlp-main.47.
EleutherAI. 2024. “Third Party Model Evaluations.” https://blog.eleuther.ai/third-party-evals/.
Elnaggar, Ahmed, Michael Heinzinger, Christian Dallago, Ghalia Rehawi,
Yu Wang, Llion Jones, Tom Gibbs, et al. 2022. “ProtTrans: Toward Understanding the Language of Life
Through Self-Supervised Learning.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 44 (10): 7112–27. https://doi.org/10.1109/tpami.2021.3095381.
Eppel, Sagi, Haoping Xu, Mor Bismuth, and Alan Aspuru-Guzik. 2020.
“Computer Vision for Recognition of Materials and Vessels in
Chemistry Lab Settings and the Vector-LabPics Data Set.” ACS
Central Science 6 (10): 1743–52. https://doi.org/10.1021/acscentsci.0c00460.
EU. 2024. “Regulation (EU) 2024/1689 of the
European Parliament and of the
Council of 13 June 2024 Laying down Harmonised
Rules on Artificial Intelligence and Amending Regulations
(EC) No 300/2008, (EU)
No 167/2013, (EU) No 168/2013,
(EU) 2018/858, (EU) 2018/1139 and
(EU) 2019/2144 and Directives
2014/90/EU, (EU) 2016/797 and
(EU) 2020/1828 (Artificial
Intelligence Act) (Text with
EEA Relevance).” http://data.europa.eu/eli/reg/2024/1689/oj/eng.
Fedus, William, Barret Zoph, and Noam Shazeer. 2022. “Switch
Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity.” Journal of Machine Learning
Research 23 (120): 1–39. https://doi.org/10.48550/arXiv.2101.03961.
Feng, Kehua, Keyan Ding, Weijie Wang, Xiang Zhuang, Zeyuan Wang, Ming
Qin, Yu Zhao, Jianhua Yao, Qiang Zhang, and Huajun Chen. 2024.
“SciKnowEval: Evaluating Multi-level
Scientific Knowledge of Large Language Models.” arXiv
Preprint arXiv: 2406.09098. https://doi.org/10.48550/arXiv.2406.09098.
Fernando, Chrisantha, Dylan Banarse, H. Michalewski, Simon Osindero, and
Tim Rocktäschel. 2023. “Promptbreeder: Self-Referential
Self-Improvement via Prompt Evolution.” International
Conference on Machine Learning. https://doi.org/10.48550/arXiv.2309.16797.
Fifty, Christopher, Jure Leskovec, and Sebastian Thrun. 2023.
“In-Context Learning for Few-Shot Molecular
Property Prediction.” arXiv Preprint arXiv:
2310.08863. https://doi.org/10.48550/arXiv.2310.08863.
Fleming, Alexander. 1929. “On the Antibacterial Action of Cultures
of a Penicillium, with Special Reference to Their Use in the
Isolation of b. Influenzae.” British Journal of
Experimental Pathology 10 (3): 226–36. https://www.jstor.org/stable/4452419.
———. 1964. “Penicillin.” In Nobel Lectures, Physiology
or Medicine 1942–1962, 83–93. Amsterdam: Elsevier. https://www.nobelprize.org/uploads/2018/06/fleming-lecture.pdf.
Flöge, Klemens, Srisruthi Udayakumar, Johanna Sommer, Marie Piraud,
Stefan Kesselheim, Vincent Fortuin, Stephan Günneman, et al. 2024.
“OneProt: Towards Multi-Modal Protein Foundation
Models.” arXiv Preprint arXiv:2411.04863. https://doi.org/10.48550/arXiv.2411.04863.
Frey, Nathan C., Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael
Gómez-Bombarelli, Connor W. Coley, and Vijay Gadepally. 2023.
“Neural Scaling of Deep Chemical Models.” Nature
Machine Intelligence 5 (11): 1297–1305. https://doi.org/10.1038/s42256-023-00740-3.
Fu, Li, Qingwei Zhou, Meiqing Jin, and Weihong Wu. 2025. “Large
Language Models as Spectrographic Assistants: Opportunities and
Challenges in Laboratory Data Analysis.” Environmental
Chemistry and Safety, April. https://doi.org/10.26599/ecs.2025.9600002.
Fujinuma, Naohiro, Brian DeCost, Jason Hattrick-Simpers, and Samuel E.
Lofland. 2022. “Why Big Data and Compute Are Not Necessarily the
Path to Big Materials Science.” Communications Materials
3 (1). https://doi.org/10.1038/s43246-022-00283-x.
Gadde, Rohit S. K., Sreelaya Devaguptam, Fangning Ren, Rajat Mittal,
Lechen Dong, Yao Wang, and Fang Liu. 2025. “Chatbot-Assisted
Quantum Chemistry for Explicitly Solvated Molecules.”
Chemical Science 16 (9): 3852–64. https://doi.org/10.1039/D4SC08677E.
Ganguli, Deep, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai,
Saurav Kadavath, Ben Mann, et al. 2022. “Red
Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and
Lessons Learned.” arXiv Preprint arXiv:
2209.07858. https://doi.org/10.48550/arXiv.2209.07858.
Ganose, Alex M, and Anubhav Jain. 2019. “Robocrystallographer: automated crystal structure text
descriptions and analysis.” MRS Communications 9
(3): 874–81. https://doi.org/10.1557/mrc.2019.94.
Gao, Peng, Jun Zhang, Qian Peng, Jie Zhang, and Vassiliki-Alexandra
Glezakou. 2020. “General Protocol for the Accurate Prediction of
Molecular 13C/1H NMR Chemical Shifts via Machine Learning Augmented
DFT.” Journal of Chemical Information and Modeling 60
(8): 3746–54.
Gao, Rujun, Xiaosu Guo, Xiaodi Li, Arun Balajiee Lekshmi Narayanan,
Naveen Thomas, and Arun R. Srinivasa. 2024. “Towards Scalable Automated Grading: Leveraging Large
Language Models for Conceptual Question Evaluation in
Engineering.” arXiv Preprint arXiv: 2411.03659.
https://doi.org/10.48550/arXiv.2411.03659.
Gao, Wenhao, Tianfan Fu, Jimeng Sun, and Connor W. Coley. 2022.
“Sample Efficiency Matters: A Benchmark for Practical Molecular
Optimization.” Neural Information Processing Systems. https://doi.org/10.48550/arXiv.2206.12411.
Gao, Yunfan, Yun Xiong, Yijie Zhong, Yuxi Bi, Ming Xue, and Haofen Wang.
2025. “Synergizing Rag and Reasoning: A Systematic Review.”
arXiv Preprint arXiv:2504.15909. https://doi.org/10.48550/arXiv.2504.15909.
Ge, Suyu, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan
Wang, Jiawei Han, and Yuning Mao. 2023. “MART: Improving LLM Safety with Multi-round Automatic
Red-Teaming.” arXiv Preprint arXiv: 2311.07689.
https://doi.org/10.48550/arXiv.2311.07689.
Ghafarollahi, Alireza, and Markus J. Buehler. 2024. “SciAgents:
Automating Scientific Discovery Through Bioinspired Multi-Agent
Intelligent Graph Reasoning.” Advanced Materials,
December. https://doi.org/10.1002/adma.202413523.
Ghareeb, Ali Essam, Benjamin Chang, Ludovico Mitchener, Angela Yiu,
Caralyn J. Szostkiewicz, Jon M. Laurent, Muhammed T. Razzak, Andrew D.
White, Michaela M. Hinks, and Samuel G. Rodriques. 2025. “Robin: A
Multi-Agent System for Automating Scientific Discovery.”
arXiv Preprint arXiv: 2505.13400. https://doi.org/10.48550/arXiv.2505.13400.
Giglio, Auro Del, and Mateus Uerlei Pereira da Costa. 2023. “The
Use of Artificial Intelligence to Improve the Scientific Writing of
Non-Native English Speakers.” Revista Da
Associação Médica Brasileira
69 (9): e20230560. https://doi.org/10.1590/1806-9282.20230560.
Girdhar, Rohit, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan
Vasudev Alwala, Armand Joulin, and Ishan Misra. 2023. “ImageBind:
One Embedding Space to Bind Them All.” arXiv Preprint arXiv:
2305.05665. https://doi.org/10.48550/arXiv.2305.05665.
Goldberg, Alexander, Ihsan Ullah, Thanh Gia Hieu Khuong, Benedictus Kent
Rachmat, Zhen Xu, Isabelle Guyon, and Nihar B. Shah. 2024.
“Usefulness of LLMs as an Author Checklist Assistant for
Scientific Papers: NeurIPS’24 Experiment.” arXiv Preprint
arXiv: 2411.03417. https://doi.org/10.48550/arXiv.2411.03417.
Goldstein, Josh A., Girish Sastry, Micah Musser, Renee DiResta, Matthew
Gentzel, and Katerina Sedova. 2023. “Generative Language Models
and Automated Influence Operations: Emerging Threats and Potential
Mitigations.” arXiv Preprint. https://doi.org/10.48550/arxiv.2301.04246.
Gonzales, Carmelo, Michael Martin Pieler, Kevin Maik Jablonka, and
Santiago Miret. 2024. “Evaluating Chemistry
Prompts for Large-Language Model Fine-Tuning.” AI for
Accelerated Materials Design - NeurIPS 2024. https://openreview.net/forum?id=cEkUia8neA.
Gottweis, Juraj, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu,
Petar Sirkovic, Artiom Myaskovsky, et al. 2025. “Towards an
AI Co-Scientist.” Arxiv Preprint
arXiv:2502.18864, February. https://doi.org/10.48550/arXiv.2502.18864.
Grattafiori, Aaron, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, et al. 2024.
“The Llama 3 Herd of Models.”
arXiv Preprint arXiv: 2407.21783. https://doi.org/10.48550/arXiv.2407.21783.
Griffiths, Ryan-Rhys, and José Miguel Hernández-Lobato. 2020.
“Constrained Bayesian Optimization for Automatic Chemical Design
Using Variational Autoencoders.” Chemical Science 11
(2): 577–86. https://doi.org/10.1039/c9sc04026a.
Group, Cronin. 2023. “XDL 2.0 Standard Specification.” https://gitlab.com/croningroup/chi-dl-specification.
Gruver, Nate, Marc Anton Finzi, Dylan Sam, J. Zico Kolter, Ben
Athiwaratkun, and Andrew Gordon Wilson. 2024. “The Promises and
Pitfalls of Language Models for Structured Numerical Data.”
OpenReview.net, October. https://openreview.net/forum?id=SZpygmv3G1.
Gruver, Nate, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C.
Lawrence Zitnick, and Zachary Ulissi. 2024.
“Fine-Tuned Language Models
Generate Stable Inorganic
Materials as Text.” Arxiv Preprint
arXiv: 2402.04379, February. https://doi.org/10.48550/arXiv.2402.04379.
Grzybowski, Bartosz A, Sara Szymkuć, Ewa P Gajewska, Karol Molga, Piotr
Dittwald, Agnieszka Wołos, and Tomasz Klucznik. 2018. “Chematica: a story of computer code that started to think
like a chemist.” Chem 4 (3): 390–98. https://doi.org/10.1016/j.chempr.2018.02.024.
Gu, Albert, and Tri Dao. 2023. “Mamba: Linear-Time Sequence
Modeling with Selective State Spaces.” arXiv Preprint arXiv:
2312.00752. https://doi.org/10.48550/arXiv.2312.00752.
Gu, Xuemei, and Mario Krenn. 2024. “Interesting Scientific Idea
Generation Using Knowledge Graphs and LLMs: Evaluations with 100
Research Group Leaders.” arXiv Preprint arXiv:
2405.17044. https://doi.org/10.48550/arXiv.2405.17044.
———. 2025. “Forecasting High-Impact Research Topics via Machine
Learning on Evolving Knowledge Graphs.” Machine Learning:
Science and Technology 6 (2): 025041. https://doi.org/10.1088/2632-2153/add6ef.
Gunasekar, Suriya, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes,
Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, et al. 2023.
“Textbooks Are All You Need.” arXiv Preprint arXiv:
2306.11644. https://doi.org/10.48550/arXiv.2306.11644.
Guo, Daya, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, et al. 2025. “Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement
learning.” arXiv Preprint arXiv:2501.12948. https://doi.org/10.48550/arXiv.2501.12948.
Guo, Jiang, A. Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W.
Coley, Klavs F. Jensen, and Regina Barzilay. 2021. “Automated
Chemical Reaction Extraction from Scientific Literature.”
Journal of Chemical Information and Modeling 62 (9): 2035–45.
https://doi.org/10.1021/acs.jcim.1c00284.
Guo, Kehan, Bozhao Nan, Yujun Zhou, Taicheng Guo, Zhichun Guo, Mihir
Surve, Zhenwen Liang, Nitesh V Chawla, Olaf Wiest, and Xiangliang Zhang.
2024. “Can LLMs Solve Molecule
Puzzles? A Multimodal Benchmark for Molecular Structure
Elucidation.” The Thirty-Eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=t1mAXb4Cop.
Guo, Taicheng, Kehan Guo, B. Nan, Zhengwen Liang, Zhichun Guo, N.
Chawla, O. Wiest, and Xiangliang Zhang. 2023. “What can Large Language Models do in chemistry? A
comprehensive benchmark on eight tasks.” Neural
Information Processing Systems. https://doi.org/10.48550/arXiv.2305.18365.
Gupta, Sonakshi, Akhlak Mahmood, Pranav Shetty, Aishat Adeboye, and
Rampi Ramprasad. 2024. “Data Extraction from Polymer Literature
Using Large Language Models.” Communications Materials 5
(1): 269. https://doi.org/10.1038/s43246-024-00708-9.
Hadsell, Raia, Sumit Chopra, and Yann LeCun. 2006. “Dimensionality
Reduction by Learning an Invariant Mapping.” 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06) 2: 1735–42. https://doi.org/10.1109/CVPR.2006.100.
Hall, S. R., F. H. Allen, and I. D. Brown. 1991. “The
Crystallographic Information File (CIF): A New Standard
Archive File for Crystallography.” Acta Crystallographica
Section A 47 (6): 655–85. https://doi.org/10.1107/S010876739101067X.
Hammer, Alexander J. S., Andrei I. Leonov, Nicholas L. Bell, and Leroy
Cronin. 2021. “Chemputation and the Standardization of Chemical
Informatics.” JACS Au 1 (10): 1572–87. https://doi.org/10.1021/jacsau.1c00303.
Handa, Kunal, Drew Bent, Alex Tamkin, Miles McCain, Esin Durmus, Michael
Stern, Mike Schiraldi, et al. 2025. “Anthropic Education
Report: How University Students Use Claude.” https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude.
Hao, Shibo, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe
Wang, and Zhiting Hu. 2023. “Reasoning with
language model is planning with world model.” arXiv
Preprint arXiv:2305.14992. https://doi.org/10.48550/arXiv.2305.14992.
Häse, Florian, Matteo Aldeghi, Riley J. Hickman, Loı̈c M. Roch, and Alán
Aspuru-Guzik. 2021. “G<scp>ryffin</Scp>: An Algorithm
for Bayesian Optimization of Categorical Variables Informed by Expert
Knowledge.” Applied Physics Reviews 8 (3). https://doi.org/10.1063/5.0048164.
He, Jiyan, Weitao Feng, Yaosen Min, Jingwei Yi, Kunsheng Tang, Shuai Li,
Jie Zhang, et al. 2023. “Control Risk for
Potential Misuse of Artificial
Intelligence in Science.” Arxiv
Preprint arXiv:2312.06632, December. https://doi.org/10.48550/arXiv.2312.06632.
He, Mingguang, Zhixi Li, Chi Liu, Danli Shi, and Zachary Tan. 2020.
“Deployment of Artificial Intelligence in Real-World Practice:
Opportunity and Challenge.” Asia-Pacific Journal of
Ophthalmology 9 (4): 299–307. https://doi.org/10.1097/apo.0000000000000301.
Heidorn, P Bryan. 2008. “Shedding light on
the dark data in the long tail of science.” Library
Trends 57 (2): 280–99. https://doi.org/10.1353/lib.0.0036.
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015. “Distilling the knowledge in a neural
network.” arXiv Preprint arXiv:1503.02531. https://doi.org/10.48550/arXiv.1503.02531.
Hira, Kausik, Mohd Zaki, Dhruvil Sheth, NM Anoop Krishnan, et al. 2024.
“Reconstructing the Materials Tetrahedron: Challenges in Materials
Information Extraction.” Digital Discovery 3 (5):
1021–37. https://doi.org/10.1039/d4dd00032c.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term
Memory.” Neural Computation 9 (8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Hollmann, Noah, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max
Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter. 2025.
“Accurate Predictions on Small Data with a Tabular Foundation
Model.” Nature 637 (8045): 319–26. https://doi.org/10.1038/s41586-024-08328-6.
Hong, Kung Yin, Lifeng Han, Riza Batista-Navarro, and Goran Nenadic.
2024. “CantonMT: Cantonese to English NMT
Platform with Fine-Tuned Models Using Synthetic Back-Translation
Data.” arXiv Preprint arXiv: 2403.11346. https://doi.org/10.48550/arXiv.2403.11346.
Hooker, Sara. 2020. “The Hardware Lottery.”
Communications of the ACM. https://doi.org/10.1145/3467017.
Howard, Jeremy, and Sebastian Ruder. 2018. “Universal language model fine-tuning for text
classification.” arXiv Preprint arXiv:1801.06146.
https://doi.org/10.48550/arXiv.1801.06146.
Hsu, Ting-Yao, C Lee Giles, and Ting-Hao’Kenneth’Huang. 2021.
“SciCap: Generating captions for scientific
figures.” arXiv Preprint arXiv:2110.11624. https://doi.org/10.48550/arXiv.2110.11624.
Hsu, Ting-Yao, Chieh-Yang Huang, Ryan Rossi, Sungchul Kim, C. Lee Giles,
and Ting-Hao K. Huang. 2023. “GPT-4 as an
Effective Zero-Shot Evaluator for Scientific Figure
Captions.” arXiv Preprint arXiv: 2310.15405. https://doi.org/10.48550/arXiv.2310.15405.
Hu, Edward J, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, Weizhu Chen, et al. 2022. “Lora: Low-Rank
Adaptation of Large Language Models.” ICLR 1 (2): 3. https://doi.org/10.48550/arXiv.2106.09685.
Hu, Shengran, Cong Lu, and Jeff Clune. 2024. “Automated Design of
Agentic Systems.” arXiv Preprint arXiv: 2408.08435. https://doi.org/10.48550/arXiv.2408.08435.
Huan, Maggie, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin
Du, Radha Poovendran, Graham Neubig, and Xiang Yue. 2025. “Does
Math Reasoning Improve General LLM Capabilities? Understanding
Transferability of LLM Reasoning.” arXiv Preprint, July.
https://doi.org/10.48550/arXiv.2507.00432.
Huang, Bing, and O. Anatole von Lilienfeld. 2016. “Understanding
Molecular Representations in Machine Learning: The Role of Uniqueness
and Target Similarity.” arXiv Preprint arXiv:
1608.06194. https://doi.org/10.48550/arXiv.1608.06194.
Huang, Qian, Jian Vora, Percy Liang, and J. Leskovec. 2023.
“MLAgentBench: Evaluating Language Agents on Machine Learning
Experimentation.” International Conference on Machine
Learning. https://doi.org/10.48550/arXiv.2310.03302.
Huang, Shu, and Jacqueline M Cole. 2022. “BatteryBERT: A
Pretrained Language Model for Battery Database Enhancement.”
Journal of Chemical Information and Modeling 62 (24): 6365–77.
Huang, Wenlong, Fei Fei, Trevor Darrell, and Yuke Zhu. 2022.
“Language Models as Zero-Shot Planners: Extracting Actionable
Knowledge for Embodied Agents.” Proceedings of the 39th
International Conference on Machine Learning (ICML). https://doi.org/10.48550/arXiv.2201.07207.
HyMARC. 2019. “Hydrogen Storage Materials
Database.” https://www.hymarc.org/home.
Inagaki, Takashi, Akari Kato, Koichi Takahashi, Haruka Ozaki, and Genki
N. Kanda. 2023. “LLMs Can Generate Robotic Scripts from
Goal-Oriented Instructions in Biological Laboratory Automation.”
arXiv Preprint arXiv:2304.10267, April. https://doi.org/10.48550/arXiv.2304.10267.
Intology.ai. 2025. “Zochi Publishes a* Paper.” https://www.intology.ai/blog/zochi-acl.
Isert, Clemens, Kenneth Atz, José Jiménez-Luna, and Gisbert Schneider.
2022. “QMugs, quantum mechanical
properties of drug-like molecules.” Scientific
Data 9 (1). https://doi.org/10.1038/s41597-022-01390-7.
Jablonka, Kevin Maik, Qianxiang Ai, Alexander Al-Feghali, Shruti
Badhwar, Joshua D. Bocarsly, Andres M. Bran, Stefan Bringuier, et al.
2023. “14 examples of how LLMs can transform
materials science and chemistry: a reflection on a large language model
hackathon.” Digital Discovery 2 (5): 1233–50. https://doi.org/10.1039/d3dd00113j.
Jablonka, Kevin Maik, Charithea Charalambous, Eva Sanchez Fernandez,
Georg Wiechers, Juliana Monteiro, Peter Moser, Berend Smit, and Susana
Garcia. 2023. “Machine learning for
industrial processes: Forecasting amine emissions from a carbon capture
plant.” Science Advances 9 (1): eadc9576. https://doi.org/10.1126/sciadv.adc9576.
Jablonka, Kevin Maik, Daniele Ongari, Seyed Mohamad Moosavi, and Berend
Smit. 2020. “Big-data science in porous
materials: materials genomics and machine learning.”
Chemical Reviews 120 (16): 8066–8129. https://doi.org/10.1021/acs.chemrev.0c00004.
Jablonka, Kevin Maik, Luc Patiny, and Berend Smit. 2022. “Making the collective knowledge of chemistry open and
machine actionable.” Nature Chemistry 14 (4):
365–76. https://doi.org/10.1038/s41557-022-00910-7.
Jablonka, Kevin Maik, Philippe Schwaller, Andres Ortega-Guerrero, and
Berend Smit. 2024. “Leveraging large language
models for predictive chemistry.” Nature Machine
Intelligence 6 (2): 161–69. https://doi.org/10.1038/s42256-023-00788-1.
Jacobs, Pieter Floris, and Robert Pollice. 2025. “Developing Large
Language Models for Quantum Chemistry Simulation Input
Generation.” Digital Discovery 4 (3): 762–75. https://doi.org/10.1039/D4DD00366G.
Jang, Hyosoon, Yunhui Jang, Jaehyung Kim, and Sungsoo Ahn. 2025.
“Can LLMs Generate Diverse
Molecules? Towards Alignment with
Structural Diversity.” Arxiv
Preprint arXiv:2410.03138, February. https://doi.org/10.48550/arXiv.2410.03138.
Jansen, Peter, Oyvind Tafjord, Marissa Radensky, Pao Siangliulue, Tom
Hope, Bhavana Dalvi Mishra, Bodhisattwa Prasad Majumder, Daniel S. Weld,
and Peter Clark. 2025. “CodeScientist: End-to-End Semi-Automated
Scientific Discovery with Code-Based Experimentation.” arXiv
Preprint arXiv: 2503.22708. https://doi.org/10.48550/arXiv.2503.22708.
Jha, Dipendra, Logan Ward, Arindam Paul, Wei-keng Liao, Alok Choudhary,
Chris Wolverton, and Ankit Agrawal. 2018. “ElemNet: Deep Learning the Chemistry of Materials From
Only Elemental Composition.” Scientific Reports 8
(1). https://doi.org/10.1038/s41598-018-35934-y.
Ji, Yixin, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo,
and Min Zhang. 2025. “A Survey of Test-Time Compute: From
Intuitive Inference to Deliberate Reasoning.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2501.02497.
Ji, Ziwei, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023.
“Survey of Hallucination in Natural
Language Generation.” ACM Comput.
Surv. 55 (12): 248:1–38. https://doi.org/10.1145/3571730.
Jia, Xiwen, Allyson Lynch, Yuheng Huang, Matthew Danielson, Immaculate
Lang’at, Alexander Milder, Aaron E. Ruby, et al. 2019.
“Anthropogenic Biases in Chemical Reaction Data Hinder Exploratory
Inorganic Synthesis.” Nature 573 (7773): 251–55. https://doi.org/10.1038/s41586-019-1540-5.
Jiang, Shuo, Daniel Evans-Yamamoto, Dennis Bersenev, Sucheendra K
Palaniappan, and Ayako Yachie-Kinoshita. 2024. “ProtoCode:
Leveraging Large Language Models (LLMs) for Automated Generation of
Machine-Readable PCR Protocols from Scientific Publications.”
SLAS Technology 29 (3): 100134. https://doi.org/10.1016/j.slast.2024.100134.
Jimenez, Carlos E., John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei,
Ofir Press, and Karthik Narasimhan. 2023. “SWE-Bench: Can Language
Models Resolve Real-World GitHub Issues?” arXiv
Preprint. https://doi.org/10.48550/arxiv.2310.06770.
Jing, Xia, Vimla L Patel, James J Cimino, Jay H Shubrook, Yuchun Zhou,
Chang Liu, and Sonsoles De Lacalle. 2022. “The Roles of a
Secondary Data Analytics Tool and Experience in Scientific Hypothesis
Generation in Clinical Research: Protocol for a Mixed Methods
Study.” JMIR Research Protocols 11 (7): e39414. https://doi.org/10.2196/39414.
Joshi, Chaitanya K. 2025. “Transformers Are Graph Neural
Networks.” arXiv Preprint. https://doi.org/10.48550/arXiv.2506.22084.
Jung, Son Gyo, Guwon Jung, and Jacqueline M Cole. 2024. “Automatic Prediction of Molecular Properties Using
Substructure Vector Embeddings within a Feature Selection
Workflow.” Journal of Chemical Information and
Modeling 65 (1): 133–52. https://doi.org/10.1021/acs.jcim.4c01862.
Kahneman, Daniel. 2011. Thinking, Fast and Slow. New York:
Farrar, Straus; Giroux.
Kambhampati, Subbarao, Karthik Valmeekam, Miquel Marquez, and Luyang
Guan. 2023. “On the Role of Large Language
Models in Planning.” Tutorial presented at the
International Conference on Automated Planning and Scheduling (ICAPS).
https://yochan-lab.github.io/tutorial/ICAPS-2023/.
Kang, Yeonghun, and Jihan Kim. 2024. “ChatMOF: An Artificial
Intelligence System for Predicting and Generating Metal-Organic
Frameworks Using Large Language Models.” Nature
Communications 15 (1): 4705. https://doi.org/10.1038/s41467-024-48998-4.
Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural
Language Models.” arXiv Preprint arXiv:
2001.08361. https://doi.org/10.48550/arXiv.2001.08361.
Kaur, Harveen, Flaviano Della Pia, Ilyes Batatia, Xavier R Advincula,
Benjamin X Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides, and
Venkat Kapil. 2025. “Data-Efficient Fine-Tuning of Foundational
Models for First-Principles Quality Sublimation Enthalpies.”
Faraday Discussions 256: 120–38. https://doi.org/10.1039/d4fd00107a.
Kawchak, Kevin. 2024. “High Dimensional and Complex Spectrometric
Data Analysis of an Organic Compound Using Large Multimodal Models and
Chained Outputs.” ChemRxiv Preprint, September. https://doi.org/10.26434/chemrxiv-2024-06gf1.
Kayali, Moe, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan
Olteanu, and Dan Suciu. 2024. “CHORUS: Foundation
Models for Unified Data Discovery and Exploration.” Proc.
VLDB Endow. 17 (8): 2104–14. https://doi.org/10.14778/3659437.3659461.
Kazdan, Joshua, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser,
Rafael Rafailov, David L. Donoho, and Sanmi Koyejo. 2024. “Collapse or Thrive? Perils and Promises of Synthetic Data
in a Self-Generating World.” arXiv Preprint arXiv:
2410.16713. https://doi.org/10.48550/arXiv.2410.16713.
Ke, T-W, Aaron S Brewster, Stella X Yu, Daniela Ushizima, Chao Yang, and
Nicholas K Sauter. 2018. “A Convolutional Neural Network-Based
Screening Tool for x-Ray Serial Crystallography.” Synchrotron
Radiation 25 (3): 655–70.
Kearnes, Steven M., Michael R. Maser, Michael Wleklinski, Anton Kast,
Abigail G. Doyle, Spencer D. Dreher, Joel M. Hawkins, Klavs F. Jensen,
and Connor W. Coley. 2021. “The Open Reaction
Database.” J. Am. Chem. Soc. 143 (45): 18820–26.
https://doi.org/10.1021/jacs.1c09820.
Keith, John A., Valentin Vassilev-Galindo, Bingqing Cheng, Stefan
Chmiela, Michael Gastegger, Klaus-Robert Müller, and Alexandre
Tkatchenko. 2021. “Combining Machine Learning and Computational
Chemistry for Predictive Insights into Chemical Systems.”
Chemical Reviews 121 (16): 9816–72. https://doi.org/10.1021/acs.chemrev.1c00107.
Khalifa, Mohamed, and Mona Albadawy. 2024. “Using artificial intelligence in academic writing and
research: An essential productivity tool.” Computer
Methods and Programs in Biomedicine Update, 100145. https://doi.org/10.1016/j.cmpbup.2024.100145.
Kharchenko, Yuliia V, and Olena M Babenko. 2024. “Advantages and limitations of large language models in
chemistry education: A comparative analysis of ChatGPT, Gemini and
Copilot.” Proceedings of the Free Open-Access
Proceedings for Computer Science Workshops, Lviv, Ukraine 3781:
42–59. https://ceur-ws.org/Vol-3781/paper03.pdf.
Kim, Seongmin, Yousung Jung, and Joshua Schrier. 2024. “Large
Language Models for Inorganic Synthesis Predictions.” Journal
of the American Chemical Society.
Kim, Seongmin, Joshua Schrier, and Yousung Jung. 2025.
“Explainable Synthesizability Prediction of Inorganic Crystal
Polymorphs Using Large Language Models.” Angewandte Chemie
International Edition. https://doi.org/10.1002/anie.202423950.
Kimber, Talia B, Maxime Gagnebin, and Andrea Volkamer. 2021.
“Maxsmi: Maximizing Molecular Property Prediction Performance with
Confidence Estimation Using Smiles Augmentation and Deep
Learning.” Artificial Intelligence in the Life Sciences
1: 100014. https://doi.org/10.1016/j.ailsci.2021.100014.
Kingsbury, Ryan S., Andrew S. Rosen, Ayush S. Gupta, Jason M. Munro,
Shyue Ping Ong, Anubhav Jain, Shyam Dwaraknath, Matthew K. Horton, and
Kristin A. Persson. 2022. “A Flexible and Scalable Scheme for
Mixing Computed Formation Energies from Different Levels of
Theory.” Npj Computational Materials. https://doi.org/10.1038/s41524-022-00881-w.
Kinney, Rodney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan
Bragg, Alexandra Buraczynski, Isabel Cachola, et al. 2023. “The
Semantic Scholar Open Data Platform.” arXiv Preprint arXiv:
2301.10140. https://doi.org/10.48550/arXiv.2301.10140.
Kirchhübel, Christin, and Georgina Brown. 2024. “Intellectual
Property Rights at the Training, Development and Generation Stages of
Large Language Models.” Edited by Ingo Siegert and Khalid
Choukri. Proceedings of the Workshop on Legal and Ethical Issues in
Human Language Technologies @ LREC-COLING, May. https://aclanthology.org/2024.legal-1.3/.
Klein, Ezra, and Rebecca Winthrop. 2025. “We Have to Really
Rethink the Purpose of Education.” https://www.youtube.com/watch?v=HQQtaWgIQmE.
Kobayashi, Sosuke. 2018. “Contextual
Augmentation: Data Augmentation by Words with Paradigmatic
Relations.” arXiv Preprint arXiv: 1805.06201. https://doi.org/10.48550/arXiv.1805.06201.
Kolbert, Elizabeth. 2024. “The Obscene Energy Demands of
a.i.” https://www.newyorker.com/news/daily-comment/the-obscene-energy-demands-of-ai.
Kon, Patrick Tser Jern, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia
Peng, Jiarong Xing, Yibo Huang, et al. 2025. “EXP-Bench: Can AI
Conduct AI Research Experiments?” arXiv Preprint arXiv:
2505.24785. https://doi.org/10.48550/arXiv.2505.24785.
Kortemeyer, Gerd, Julian Nöhl, and Daria Onishchuk. 2024. “Grading assistance for a handwritten thermodynamics exam
using artificial intelligence: An exploratory study.”
Physical Review Physics Education Research 20 (2). https://doi.org/10.1103/physrevphyseducres.20.020144.
Kosmyna, Nataliya, Eugene Hauptmann, Ye Tong Yuan, Jessica Situ,
Xian-Hao Liao, Ashly Vivian Beresnitzky, Iris Braunstein, and Pattie
Maes. 2025. “Your Brain on ChatGPT: Accumulation of Cognitive Debt
When Using an AI Assistant for Essay Writing Task.” arXiv
Preprint. https://doi.org/10.48550/arxiv.2506.08872.
Kosso, Peter. 2017. What Goes up... Gravity and Scientific
Method. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316417003.
Koziarski, Andrei, Michałand Rekesh, Dmytro Shevchuk, Almer van der
Sloot, Piotr Gaiński, Yoshua Bengio, Chenghao Liu, Mike Tyers, and
Robert Batey. 2024. “RGFN: Synthesizable Molecular
Generation Using GFlowNets.” Advances in Neural
Information Processing Systems 37: 46908–55. https://doi.org/10.48550/arXiv.2406.08506.
Krenn, Mario, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and
Alan Aspuru-Guzik. 2020. “Self-referencing
embedded strings (SELFIES): A 100% robust molecular string
representation.” Machine Learning: Science and
Technology 1 (4): 045024. https://doi.org/10.1088/2632-2153/aba947.
Kristiadi, Agustinus, Felix Strieth-Kalthoff, Marta Skreta, Pascal
Poupart, Alán Aspuru-Guzik, and Geoff Pleiss. 2024. “A Sober Look
at LLMs for Material Discovery: Are They Actually Good for Bayesian
Optimization over Molecules?” Forty-First International
Conference on Machine Learning, ICML 2024. https://doi.org/10.48550/arXiv.2402.05015.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012.
“Imagenet Classification with Deep Convolutional Neural
Networks.” Advances in Neural Information Processing
Systems 25. https://doi.org/10.1145/3065386.
Krzyzanowski, Adrian, Stephen D. Pickett, and Peter Pogány. 2025.
“Exploring BERT for Reaction Yield Prediction:
Evaluating the Impact of Tokenization, Molecular Representation, and
Pretraining Data Augmentation.” Journal of Chemical
Information and Modeling 65 (9): 4381–4402. https://doi.org/10.1021/acs.jcim.5c00359.
Kuhn, Michael, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. 2016.
“The SIDER database of drugs and
side effects.” Nucleic Acids Research 44 (D1):
D1075–79. https://doi.org/10.1093/nar/gkv1075.
Kuhn, Thomas S. 1962. The Structure of Scientific Revolutions.
Vol. 2. International Encyclopedia of Unified Science 2. Chicago:
University of Chicago Press.
Kumar, Aounon, Chirag Agarwal, Suraj Srinivas, Aaron Jiaxun Li, Soheil
Feizi, and Himabindu Lakkaraju. 2023. “Certifying LLM Safety
Against Adversarial Prompting.” arXiv Preprint. https://doi.org/10.48550/arxiv.2309.02705.
Kumar, Pankaj, Saurabh Kabra, and Jacqueline M Cole. 2025.
“MechBERT: Language Models for Extracting Chemical and Property
Relationships about Mechanical Stress and Strain.” Journal of
Chemical Information and Modeling.
Kumbhar, Shrinidhi, Venkatesh Mishra, Kevin Coutinho, Divij Handa, Ashif
Iquebal, and Chitta Baral. 2025. “Hypothesis Generation for
Materials Discovery and Design Using Goal-Driven and Constraint-Guided
LLM Agents.” North American Chapter of the Association for
Computational Linguistics. https://doi.org/10.48550/arXiv.2501.13299.
Kuntz, Thomas, Agatha Duzan, Hao Zhao, Francesco Croce, Zico Kolter,
Nicolas Flammarion, and Maksym Andriushchenko. 2025. “OS-Harm: A
Benchmark for Measuring Safety of Computer Use Agents.” arXiv
Preprint arXiv: 2506.14866. https://doi.org/10.48550/arXiv.2506.14866.
Lakatos, Imre. 1970. “Falsification and the Methodology of
Scientific Research Programmes.” In Criticism and the Growth
of Knowledge, edited by Imre Lakatos and Alan Musgrave, 91–196.
Cambridge: Cambridge University Press.
Langer, Marcel F., Alex Goeßmann, and Matthias Rupp. 2022. “Representations of molecules and materials for
interpolation of quantum-mechanical simulations via machine
learning.” Npj Computational Materials 8 (1). https://doi.org/10.1038/s41524-022-00721-x.
Laurent, Jon M., Joseph D. Janizek, Michael Ruzo, Michaela M. Hinks,
Michael J. Hammerling, Siddharth Narayanan, Manvitha Ponnapati, Andrew
D. White, and Samuel G. Rodriques. 2024. “LAB-Bench: Measuring Capabilities of Language Models for
Biology Research.” arXiv Preprint arXiv:
2407.10362. https://doi.org/10.48550/arXiv.2407.10362.
Lazaridou, Angeliki, and Marco Baroni. 2020. “Emergent Multi-Agent
Communication in the Deep Learning Era.” arXiv Preprint
arXiv:2006.02419. https://doi.org/10.48550/arXiv.2006.02419.
Lee, Daeseok, and Yongjun Cho. 2024.
“FINE-TUNING
POCKET-CONDITIONED 3D
MOLECULE GENERATION VIA
REINFORCEMENT LEARNING.” The
Twelfth International Conference on Learning Representations Workshop on
Generative and Experimental Perspectives for Biomolecular Design,
ICLR-GEM. https://openreview.net/forum?id=hlzRzr9ksu.
Lee, Jinhyuk, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh
Sachan, Michael Boratko, Yi Luan, et al. 2024. “Can Long-Context
Language Models Subsume Retrieval, RAG, SQL, and More?” arXiv
Preprint. https://doi.org/10.48550/arXiv.2406.13121.
Lee, Namkyeong, Edward De Brouwer, Ehsan Hajiramezanali, Tommaso
Biancalani, Chanyoung Park, and Gabriele Scalia. 2025.
“RAG-Enhanced Collaborative LLM Agents for Drug Discovery.”
arXiv Preprint arXiv: 2502.17506. https://doi.org/10.48550/arXiv.2502.17506.
Leonov, Artem I., Alexander J. S. Hammer, Sławomir Lach, S. Hessam M.
Mehr, Dario Caramelli, Davide Angelone, Aamir Khan, et al. 2024.
“An Integrated Self-Optimizing Programmable Chemical Synthesis and
Reaction Engine.” Nature Communications 15 (1): 4544. https://doi.org/10.1038/s41467-024-45444-3.
Lewis, Patrick, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, et al. 2020.
“Retrieval-Augmented Generation for Knowledge-Intensive Nlp
Tasks.” Advances in Neural Information Processing
Systems 33: 9459–74. https://doi.org/10.48550/arXiv.2005.11401.
Li, Cheng, Mingyang Zhang, Qiaozhu Mei, Yaqing Wang, Spurthi Amba
Hombaiah, Yi Liang, and Michael Bendersky. 2023. “Teach LLMs to
Personalize - an Approach Inspired by Writing Education.”
arXiv Preprint arXiv: 2308.07968. https://doi.org/10.48550/arXiv.2308.07968.
Li, Guohao, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin,
and Bernard Ghanem. 2023. “CAMEL:
Communicative Agents for "Mind" Exploration of Large Language Model
Society.” arXiv Preprint arXiv: 2303.17760. https://doi.org/10.48550/arXiv.2303.17760.
Li, Jiatong, Wei Liu, Zhihao Ding, Wenqi Fan, Yuqiang Li, and Qing Li.
2025. “Large Language Models Are
in-Context Molecule
Learners.” IEEE Transactions on Knowledge and
Data Engineering 37 (7). https://doi.org/10.1109/TKDE.2025.3557697.
Li, Jiatong, Yunqing Liu, Wei Liu, Jingdi Le, Di Zhang, Wenqi Fan,
Dongzhan Zhou, Yuqiang Li, and Qing Li. 2024.
“MolReFlect: Towards
In-Context Fine-Grained
Alignments Between Molecules and
Texts.” Arxiv Preprint arXiv:2411.14721,
November. https://doi.org/10.48550/arXiv.2411.14721.
Li, Junxian, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan,
Cai Zhou, et al. 2024. “Seeing and Understanding: Bridging Vision
with Chemical Knowledge via ChemVLM.” arXiv Preprint arXiv:
2408.07246. https://doi.org/10.48550/arXiv.2408.07246.
Li, Xiaobo, Yu Che, Linjiang Chen, Tao Liu, Kewei Wang, Lunjie Liu,
Haofan Yang, Edward O. Pyzer-Knapp, and Andrew I. Cooper. 2024.
“Sequential Closed-Loop Bayesian Optimization as a Guide for
Organic Molecular Metallophotocatalyst Formulation Discovery.”
Nature Chemistry 16 (8): 1286–94. https://doi.org/10.1038/s41557-024-01546-5.
Li, Zhaoxing, Vahid Yazdanpanah, Jindi Wang, Wen Gu, Lei Shi, Alexandra
I. Cristea, Sarah Kiden, and Sebastian Stein. 2025. “TutorLLM: Customizing Learning Recommendations with
Knowledge Tracing and Retrieval-Augmented Generation.”
arXiv Preprint arXiv: 2502.15709. https://doi.org/10.48550/arXiv.2502.15709.
Li, Zhuoran, Xu Sun, Wanyu Lin, and Jiannong Cao. 2024. “Unveiling Molecular Secrets: An LLM-Augmented Linear
Model for Explainable and Calibratable Molecular Property
Prediction.” arXiv Preprint arXiv: 2410.08829. https://doi.org/10.48550/arXiv.2410.08829.
Liang, Tian, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang,
Yujiu Yang, Shuming Shi, and Zhaopeng Tu. 2024. “Encouraging
Divergent Thinking in Large Language Models Through Multi-Agent
Debate.” arXiv Preprint. https://doi.org/10.48550/arXiv.2305.19118.
Lim, Sangrak, and Yong Oh Lee. 2020. “Predicting Chemical
Properties Using Self-Attention Multi-Task Learning Based on
SMILES Representation.” 25th International
Conference on Pattern Recognition, ICPR 2020, Virtual Event
/ Milan, Italy, January 10-15, 2021, 3146–53. https://doi.org/10.1109/ICPR48806.2021.9412555.
Lin, Li-Chiang, Adam H. Berger, Richard L. Martin, Jihan Kim, Joseph A.
Swisher, Kuldeep Jariwala, Chris H. Rycroft, et al. 2012. “In silico screening of carbon-capture
materials.” Nature Materials 11 (7): 633–41. https://doi.org/10.1038/nmat3336.
Lin, Xuan, Long Chen, Yile Wang, Xiangxiang Zeng, and Philip S. Yu.
2025. “Property Enhanced Instruction
Tuning for Multi-Task Molecule
Generation with Large Language
Models.” Arxiv Preprint arXiv:2412.18084,
May. https://doi.org/10.48550/arXiv.2412.18084.
Listgarten, Jennifer. 2024. “The Perpetual Motion Machine of
AI-Generated Data and the Distraction of ChatGPT as a
‘Scientist’.” Nature Biotechnology 42 (3):
371–73. https://doi.org/10.1038/s41587-023-02103-0.
Liu, Bo, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep
Biswas, and Peter Stone. 2023. “Llm+ p:
Empowering large language models with optimal planning
proficiency.” arXiv Preprint arXiv:2304.11477. https://doi.org/10.48550/arXiv.2304.11477.
Liu, Gang, Michael Sun, Wojciech Matusik, Meng Jiang, and Jie Chen.
2024. “Multimodal Large Language
Models for Inverse Molecular
Design with Retrosynthetic
Planning.” Arxiv Preprint arXiv:
2410.04223, October. https://doi.org/10.48550/arXiv.2410.04223.
Liu, Gang, Jiaxin Xu, Eric Inae, Yihan Zhu, Ying Li, Tengfei Luo, Meng
Jiang, et al. 2025. “NeurIPS - Open Polymer Prediction
2025.” https://kaggle.com/competitions/neurips-open-polymer-prediction-2025.
Liu, Hongxuan, Haoyu Yin, Zhiyao Luo, and Xiaonan Wang. 2025.
“Integrating Chemistry Knowledge in Large Language Models via
Prompt Engineering.” Synthetic and Systems Biotechnology
10 (1): 23–38. https://doi.org/10.1016/j.synbio.2024.07.004.
Liu, Shengchao, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling
Liu, Jian Tang na, Chaowei Xiao na, and Animashree Anandkumar. 2023.
“Multi-Modal Molecule Structure-Text Model for Text-Based
Retrieval and Editing.” Nature Machine Intelligence. https://doi.org/10.1038/s42256-023-00759-6.
Liu, Yuyan, Sirui Ding, Sheng Zhou, Wenqi Fan, and Qiaoyu Tan. 2024.
“MolecularGPT: Open Large
Language Model (LLM) for
Few-Shot Molecular
Property Prediction.” Arxiv
Preprint arXiv:2406.12950, October. https://doi.org/10.48550/arXiv.2406.12950.
Liu, Zequn, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming
Zhang, and Tie-Yan Liu. 2023. “MolXPT: Wrapping Molecules with
Text for Generative Pre-Training.” arXiv Preprint arXiv:
2305.10688. https://doi.org/10.48550/arXiv.2305.10688.
Liu, Zhihan, Yubo Chai, and Jianfeng Li. 2025. “Toward Automated
Simulation Research Workflow Through LLM Prompt Engineering
Design.” Journal of Chemical Information and Modeling 65
(1): 114–24. https://doi.org/10.1021/acs.jcim.4c01653.
Liu, Zhiyuan, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji
Kawaguchi, Xiang Wang, and Tat-Seng Chua. 2023.
“MolCA: Molecular
Graph-Language Modeling with
Cross-Modal Projector and
Uni-Modal Adapter.”
arXiv Preprint arXiv:2310.12798v4, October. https://doi.org/10.48550/arXiv.2310.12798.
Liu, Zichang, Qingyun Liu, Yuening Li, Liang Liu, Anshumali Shrivastava,
Shuchao Bi, Lichan Hong, Ed H Chi, and Zhe Zhao. 2024. “Wisdom of
Committee: Distilling from Foundation Model to Specialized Application
Model.” arXiv Preprint arXiv:2402.14035. https://doi.org/10.48550/arXiv.2402.14035.
Livne, Micha, Zulfat Miftahutdinov, Elena Tutubalina, Maksim Kuznetsov,
Daniil Polykovskiy, Annika Brundyn, Aastha Jhunjhunwala, et al. 2024.
“nach0: Multimodal natural and chemical
languages foundation model.” Chemical Science 15
(22): 8380–89. https://doi.org/10.1039/d4sc00966e.
Lommerse, Jos P. M., W. D. Sam Motherwell, Herman L. Ammon, Jack D.
Dunitz, Angelo Gavezzotti, Detlef W. M. Hofmann, Frank J. J. Leusen, et
al. 2000. “A test of crystal structure
prediction of small organic molecules.” Acta
Crystallographica Section B Structural Science 56 (4): 697–714. https://doi.org/10.1107/s0108768100004584.
Lu, Jieyu, Zhangde Song, Qiyuan Zhao, Yuanqi Du, Yirui Cao, Haojun Jia,
and Chenru Duan. 2025. “Generative Design of Functional Metal
Complexes Utilizing the Internal Knowledge and Reasoning Capability of
Large Language Models.” Journal of the American Chemical
Society, July. https://doi.org/10.1021/jacs.5c02097.
Lu, Zimu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan,
Mingjie Zhan, and Hongsheng Li. 2024. “MathGenie: Generating Synthetic Data with Question
Back-translation for Enhancing Mathematical Reasoning of
LLMs.” Annual Meeting of the Association for
Computational Linguistics. https://doi.org/10.48550/arXiv.2402.16352.
Lynch, Aengus, Benjamin Wright, Caleb Larson, Kevin K. Troy, Stuart J.
Ritchie, Sören Mindermann, Ethan Perez, and Evan Hubinger. 2025.
“Agentic Misalignment: How LLMs Could Be an Insider
Threat.” Anthropic Research.
M. Mehr, S Hessam, Dario Caramelli, and Leroy Cronin. 2023.
“Digitizing Chemical Discovery with a Bayesian Explorer for
Interpreting Reactivity Data.” Proceedings of the National
Academy of Sciences 120 (17): e2220045120. https://doi.org/10.1073/pnas.2220045120.
Mahmood, Omar, Elman Mansimov, Richard Bonneau, and Kyunghyun Cho. 2021.
“Masked Graph Modeling for Molecule Generation.” Nature
Communications 12 (1): 3156. https://doi.org/10.1038/s41467-021-23415-2.
Maini, Pratyush, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and
Navdeep Jaitly. 2024. “Rephrasing the Web: A Recipe for Compute
and Data-Efficient Language Modeling.” arXiv Preprint arXiv:
2401.16380. https://doi.org/10.48550/arXiv.2401.16380.
Makelov, Aleksandar, Georg Lange, and Neel Nanda. 2023. “Is This
the Subspace You Are Looking for? An Interpretability Illusion for
Subspace Activation Patching.” arXiv Preprint arXiv:
2311.17030. https://doi.org/10.48550/arXiv.2311.17030.
Malkov, Yu A, and Dmitry A Yashunin. 2018. “Efficient and Robust
Approximate Nearest Neighbor Search Using Hierarchical Navigable Small
World Graphs.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 42 (4): 824–36. https://doi.org/10.1109/tpami.2018.2889473.
Mandal, Indrajeet, Jitendra Soni, Mohd Zaki, Morten M. Smedskjaer,
Katrin Wondraczek, Lothar Wondraczek, Nitya Nand Gosvami, and N. M.
Anoop Krishnan. 2024. “Autonomous Microscopy
Experiments through Large Language Model Agents.”
arXiv Preprint arXiv: 2501.10385. https://doi.org/10.48550/arXiv.2501.10385.
Marcus, Gary. 2020. “The Next Decade in AI: Four Steps Towards
Robust Artificial Intelligence.” arXiv Preprint
arXiv:2002.06177. https://doi.org/10.48550/arXiv.2002.06177.
Marcus, Greil. 2025. “Will the Humanities Survive Artificial
Intelligence?” The New Yorker, April. https://www.newyorker.com/culture/the-weekend-essay/will-the-humanities-survive-artificial-intelligence.
Marion, Max, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and
Sara Hooker. 2023. “When Less Is More: Investigating Data Pruning
for Pretraining LLMs at Scale.” arXiv Preprint arXiv:
2309.04564. https://doi.org/10.48550/arXiv.2309.04564.
Martin, Stephen F. 2022. “Bridging known and
unknown unknowns: From natural products and their mimics to unmet needs
in neuroscience.” Accounts of Chemical Research
55 (17): 2397–2408. https://doi.org/10.1021/acs.accounts.1c00773.
McDonald, Robert S., and Paul A. Wilks. 1988. “JCAMP-DX: A
Standard Form for Exchange of Infrared Spectra in Computer Readable
Form.” Applied Spectroscopy 42 (1): 151–62. https://doi.org/10.1366/0003702884428734.
Mehr, Saman H. M., Mark Craven, Andrei I. Leonov, Graham Keenan, and
Leroy Cronin. 2020. “A Universal System for Digitization and
Automatic Execution of the Chemical Synthesis Literature.”
Science 370 (6512): 101–8. https://doi.org/10.1126/science.abc2986.
Mendible-Barreto, Orlando A., Misael Díaz-Maldonado, Fernando J. Carmona
Esteva, J. Emmanuel Torres, Ubaldo M. Córdova-Figueroa, and Yamil J.
Colón. 2025. “DynaMate: Leveraging AI-Agents for Customized
Research Workflows.” Molecular Systems Design &
Engineering 10: 585–98. https://doi.org/10.1039/D5ME00062A.
Micikevicius, Paulius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, et al. 2017. “Mixed Precision
Training.” arXiv Preprint arXiv:1710.03740. https://doi.org/10.48550/arXiv.1710.03740.
Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
“Efficient Estimation of Word Representations
in Vector Space.” arXiv Preprint arXiv:
1301.3781. https://doi.org/10.48550/arXiv.1301.3781.
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. “Distributed Representations of Words and Phrases and
Their Compositionality.” Neurips. https://doi.org/10.48550/arXiv.1310.4546.
Miret, Santiago, and N M Anoop Krishnan. 2024. “Are LLMs Ready for
Real-World Materials Discovery?” arXiv Preprint arXiv:
2402.05200. https://doi.org/10.48550/arXiv.2402.05200.
Mirza, Adrian, Nawaf Alampara, Sreekanth Kunchapu, Martiño Rı́os-Garcı́a,
Benedict Emoekabu, Aswanth Krishnan, Tanya Gupta, et al. 2025. “A
Framework for Evaluating the Chemical Knowledge and Reasoning Abilities
of Large Language Models Against the Expertise of Chemists.”
Nature Chemistry, 1–8. https://doi.org/10.1038/s41557-025-01815-x.
Mirza, Adrian, Nawaf Alampara, Martiño Rı́os-Garcı́a, Mohamed Abdelalim,
Jack Butler, Bethany Connolly, Tunca Dogan, et al. 2025.
“ChemPile: A 250GB Diverse and Curated Dataset for Chemical
Foundation Models.” arXiv Preprint arXiv: 2505.12534. https://doi.org/10.48550/arXiv.2505.12534.
Mirza, A., and K. M. Jablonka. 2024. “Elucidating Structures from Spectra Using Multimodal
Embeddings and Discrete Optimization.” ChemRxiv
Preprint. https://doi.org/10.26434/chemrxiv-2024-f3b18-v2.
Mishra, Vaibhav, Somaditya Singh, Dhruv Ahlawat, Mohd Zaki, Vaibhav
Bihani, Hargun Singh Grover, Biswajit Mishra, Santiago Miret, Mausam,
and N. M. Anoop Krishnan. 2024. “Foundational Large Language
Models for Materials Research.” arXiv Preprint arXiv:
2412.09560. https://doi.org/10.48550/arXiv.2412.09560.
Mitchell, John B. O. 2017. “DLS-100
Solubility Dataset.” https://doi.org/10.17630/3A3A5ABC-8458-4924-8E6C-B804347605E8.
Mitchener, Ludovico, Jon M Laurent, Benjamin Tenmann, Siddharth
Narayanan, Geemi P Wellawatte, Andrew White, Lorenzo Sani, and Samuel G
Rodriques. 2025. “BixBench: a Comprehensive
Benchmark for LLM-based Agents in Computational Biology.”
arXiv Preprint arXiv: 2503.00096. https://doi.org/10.48550/arXiv.2503.00096.
Mittermaier, Mirja, Marium M. Raza, and Joseph C. Kvedar. 2023.
“Bias in AI-Based Models for Medical Applications: Challenges and
Mitigation Strategies.” Npj Digital Medicine. https://doi.org/10.1038/s41746-023-00858-z.
Mobley, David L., and J. Peter Guthrie. 2014. “FreeSolv: a database of experimental and
calculated hydration free energies, with input files.”
Journal of Computer-Aided Molecular Design 28 (7). https://doi.org/10.1007/s10822-014-9747-x.
Mollick, Ethan R., Lilach Mollick, Natalie Bach, LJ Ciccarelli, Ben
Przystanski, and Daniel Ravipinto. 2024. “AI
Agents and Education: Simulated Practice at Scale.”
The Wharton School Research Paper. https://doi.org/10.2139/ssrn.4871171.
Mollick, Ethan, and Lilach Mollick. 2024. “Instructors as Innovators: A future-focused approach to
new AI learning opportunities, with prompts.” arXiv
Preprint arXiv: 2407.05181. https://doi.org/10.48550/arXiv.2407.05181.
Moreno-Barea, Francisco J, Leonardo Franco, David Elizondo, and Martin
Grootveld. 2022. “Application of Data Augmentation Techniques
Towards Metabolomics.” Computers in Biology and Medicine
148: 105916.
Morris, Meredith Ringel, Jascha Sohl-dickstein, Noah Fiedel, Tris
Warkentin, Allan Dafoe, Aleksandra Faust, Clement Farabet, and Shane
Legg. 2023. “Levels of AGI for Operationalizing Progress on the
Path to AGI.” arXiv Preprint arXiv: 2311.02462. https://doi.org/10.48550/arXiv.2311.02462.
Moult, John. 2005. “A decade of CASP:
progress, bottlenecks and prognosis in protein structure
prediction.” Current Opinion in Structural
Biology 15 (3): 285–89. https://doi.org/10.1016/j.sbi.2005.05.011.
Musil, Felix, Andrea Grisafi, Albert P. Bartók, Christoph Ortner, Gábor
Csányi, and Michele Ceriotti. 2021. “Physics-Inspired Structural Representations for Molecules
and Materials.” Chemical Reviews 121 (16):
9759–9815. https://doi.org/10.1021/acs.chemrev.1c00021.
Mytton, David. 2021. “Data Centre Water Consumption.”
Npj Clean Water. https://doi.org/10.1038/s41545-021-00101-w.
Narayan, Avanika, Ines Chami, Laurel Orr, Simran Arora, and Christopher
Ré. 2022. “Can Foundation Models Wrangle Your Data?”
Arxiv Preprint arXiv:2205.09911. https://doi.org/10.48550/ARXIV.2205.09911.
Narayanan, Arvind, and Sayash Kapoor. 2025. “Why an Overreliance
on AI-Driven Modelling Is Bad for Science.”
Nature 640 (8058): 312–14. https://doi.org/10.1038/d41586-025-01067-2.
Narayanan, Siddharth M., James D. Braza, Ryan-Rhys Griffiths, Albert
Bou, Geemi Wellawatte, Mayk Caldas Ramos, Ludovico Mitchener, Samuel G.
Rodriques, and Andrew D. White. 2025. “Training a Scientific
Reasoning Model for Chemistry.” arXiv Preprint arXiv:
2506.17238. https://doi.org/10.48550/arXiv.2506.17238.
Naumov, Vladimir, Diana Zagirova, Sha Lin, Yupeng Xie, Wenhao Gou,
Anatoly Urban, Nina Tikhonova, et al. 2025. “DORA AI Scientist:
Multi-Agent Virtual Research Team for Scientific Exploration Discovery
and Automated Report Generation.” bioRxiv, March. https://doi.org/10.1101/2025.03.06.641840.
Neese, Frank. 2022. “Software Update: The ORCA Program System,
Version 5.0.” Wiley Interdisciplinary Reviews: Computational
Molecular Science 12 (1): e1606. https://doi.org/10.1002/wcms.1606.
Nega, Philip W., Zhi Li, Victor Ghosh, Janak Thapa, Shijing Sun, Noor
Titan Putri Hartono, Mansoor Ani Najeeb Nellikkal, et al. 2021.
“Using Automated Serendipity to Discover How Trace Water Promotes
and Inhibits Lead Halide Perovskite Crystal Formation.”
Applied Physics Letters 119 (4). https://doi.org/10.1063/5.0059767.
Newton, Isaac. 1999. The Principia: Mathematical Principles of
Natural Philosophy. Translated by I. Bernard Cohen and Anne
Whitman. Berkeley: University of California Press.
Ni, Yuyan, Shikun Feng, Xin Hong, Yuancheng Sun, Wei-Ying Ma, Zhi-Ming
Ma, Qiwei Ye, and Yanyan Lan. 2024. “Pre-Training with Fractional
Denoising to Enhance Molecular Property Prediction.” Nature
Machine Intelligence 6 (10): 1169–78. https://doi.org/10.1038/s42256-024-00900-z.
NIST. 2024. “Safety Considerations for
Chemical and/or Biological AI
Models.” Federal Register. https://www.federalregister.gov/documents/2024/10/04/2024-22974/safety-considerations-for-chemical-andor-biological-ai-models.
Novikov, Alexander, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen
Huang, Adam Zsolt Wagner, Sergey Shirobokov, et al. 2025.
“AlphaEvolve: A Coding Agent for Scientific and
Algorithmic Discovery.” Google DeepMind. https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf.
O’Donoghue, Odhran, Aleksandar Shtedritski, John Ginger, Ralph Abboud,
Ali Essa Ghareeb, Justin Booth, and Samuel G Rodriques. 2023.
“BioPlanner: Automatic Evaluation of LLMs on Protocol Planning in
Biology.” arXiv Preprint arXiv:2310.10632. https://doi.org/10.48550/arXiv.2310.10632.
O’Neill, Charles, Tirthankar Ghosal, Roberta Răileanu, Mike Walmsley,
Thang Bui, Kevin Schawinski, and Ioana Ciucă. 2025. “Sparks of
Science: Hypothesis Generation Using Structured Paper Data.”
arXiv Preprint arXiv: 2504.12976. https://doi.org/10.48550/arXiv.2504.12976.
Ollion, Étienne, Rubing Shen, Ana Macanovic, and Arnault Chatelain.
2024. “The Dangers of Using Proprietary LLMs for Research.”
Nature Machine Intelligence 6 (1): 4–5. https://doi.org/10.1038/s42256-023-00783-6.
Omiye, Jesutofunmi A., Jenna C. Lester, Simon Spichak, Veronica
Rotemberg, and Roxana Daneshjou. 2023. “Large Language Models
Propagate Race-Based Medicine.” Npj Digital Medicine 6
(1): 1–4. https://doi.org/10.1038/s41746-023-00939-z.
Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. 2018. “Representation Learning with Contrastive Predictive
Coding.” arXiv Preprint arXiv: 1807.03748. https://doi.org/10.48550/arXiv.1807.03748.
OpenAI. 2023. “Written Evidence to [Committee Name].” UK
Parliament; Written Evidence. https://committees.parliament.uk/writtenevidence/126981/pdf/.
———. 2024. “Building an Early Warning System for
LLM-Aided Biological Threat Creation.” https://openai.com/index/building-an-early-warning-system-for-llm-aided-biological-threat-creation/.
OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, et al. 2023. “GPT-4
Technical Report.” arXiv Preprint arXiv:
2303.08774. https://doi.org/10.48550/arXiv.2303.08774.
Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, et al. 2022. “Training Language
Models to Follow Instructions with Human Feedback.” arXiv
Preprint. https://doi.org/10.48550/arXiv.2203.02155.
Oviedo, Felipe, Zekun Ren, Shijing Sun, Charles Settens, Zhe Liu, Noor
Titan Putri Hartono, Savitha Ramasamy, et al. 2019. “Fast and
Interpretable Classification of Small x-Ray Diffraction Datasets Using
Data Augmentation and Deep Neural Networks.” Npj
Computational Materials 5 (1): 60.
Pagel, Sebastian, Michal Jirásek, and Leroy Cronin. 2024.
“Validation of the Scientific Literature via Chemputation
Augmented by Large Language Models.” arXiv Preprint
arXiv:2410.06384, October. https://doi.org/10.48550/arXiv.2410.06384.
Pantha, Nishan, Muthukumaran Ramasubramanian, Iksha Gurung, Manil
Maskey, and Rahul Ramachandran. 2024. “Challenges in
Guardrailing Large Language
Models for Science.” Arxiv Preprint
arXiv: 2411.08181, December. https://doi.org/10.48550/arXiv.2411.08181.
Parisi, Aaron, Yao Zhao, and Noah Fiedel. 2022. “Talm: Tool
Augmented Language Models.” arXiv Preprint
arXiv:2205.12255. https://doi.org/10.48550/arXiv.2205.12255.
Park, Nathaniel H., Matteo Manica, Jannis Born, James L. Hedrick, Tim
Erdmann, Dmitry Yu. Zubarev, Nil Adell-Mill, Pedro L. Arrechea, et al.
2023. “Artificial Intelligence Driven Design of Catalysts and
Materials for Ring Opening Polymerization Using a Domain-Specific
Language.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-39396-3.
Patiny, Luc, and Guillaume Godin. 2023. “Automatic Extraction of
FAIR Data from Publications Using LLM.” ChemRxiv
Preprint. https://doi.org/10.26434/chemrxiv-2023-05v1b-v2.
Penedo, Guilherme, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell,
Colin A Raffel, Leandro Von Werra, Thomas Wolf, et al. 2024.
“The fineweb datasets: Decanting the web for
the finest text data at scale.” Advances in Neural
Information Processing Systems 37: 30811–49. https://doi.org/10.48550/arXiv.2406.17557.
Penedo, Guilherme, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru,
Hamza Alobeidli, Alessandro Cappelli, Baptiste Pannier, Ebtesam
Almazrouei, and Julien Launay. 2023. “The Refinedweb Dataset for
Falcon Llm: Outperforming Curated Corpora with Web Data Only.”
Advances in Neural Information Processing Systems 36: 79155–72.
https://doi.org/10.48550/arXiv.2306.01116.
Peng, Ji-Lun, Sijia Cheng, Egil Diau, Yung-Yu Shih, Po-Heng Chen,
Yen-Ting Lin, and Yun-Nung Chen. 2024. “A
Survey of Useful LLM Evaluation.” arXiv Preprint
arXiv: 2406.00936. https://doi.org/10.48550/arXiv.2406.00936.
Peppin, Aidan, Anka Reuel, Stephen Casper, Elliot Jones, Andrew Strait,
Usman Anwar, Anurag Agrawal, et al. 2024. “The Reality of AI and Biorisk.” arXiv
Preprint arXiv: 2412.01946. https://doi.org/10.48550/arXiv.2412.01946.
Perez, Ethan, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John
Aslanides, Amelia Glaese, Nat McAleese, and Geoffrey Irving. 2022.
“Red Teaming Language Models with Language
Models.” arXiv Preprint arXiv: 2202.03286. https://doi.org/10.48550/arXiv.2202.03286.
Perez, Ryann M., Marie Shimogawa, Yanan Chang, Hoang Anh T. Phan, Jason
G. Marmorstein, Evan S. K. Yanagawa, and E. James Petersson. 2025.
“Large Language Models for Education:
ChemTAsk - An Open-Source Paradigm for Automated Q&A in the Graduate
Classroom.” arXiv Preprint arXiv: 2502.00016. https://doi.org/10.48550/arXiv.2502.00016.
Pieler, Michael, Marco Bellagente, Hannah Teufel, Duy Phung, Nathan
Cooper, Jonathan Tow, Paulo Rocha, et al. 2024. “Rephrasing
Natural Text Data with Different Languages and Quality Levels for Large
Language Model Pre-Training.” arXiv Preprint
arXiv:2410.20796. https://doi.org/10.48550/arXiv.2410.20796.
Pietsch, Wolfgang, and Jörg Wernecke. 2017. “Introduction: Ten
Theses on Big Data and Computability.” In Berechenbarkeit Der
Welt?, 37–57. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-12153-2_2.
Pistono, Federico, and Roman V. Yampolskiy. 2016. “Unethical
Research: How to Create a
Malevolent Artificial
Intelligence.” Arxiv Preprint
arXiv:1605.02817, September. https://doi.org/10.48550/arXiv.1605.02817.
Polak, Maciej P, and Dane Morgan. 2024. “Extracting Accurate
Materials Data from Research Papers with Conversational Language Models
and Prompt Engineering.” Nature Communications 15 (1):
1569. https://doi.org/10.1038/s41467-024-45914-8.
Polanyi, Michael. 2009. The Tacit Dimension. Reproduction en
fac-similé. Chicago: University of Chicago press.
Popper, Karl R. 1959. The Logic of Scientific Discovery.
London: Routledge.
Preuer, Kristina, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and
Günter Klambauer. 2018. “Fréchet ChemNet Distance: A Metric for
Generative Models for Molecules in Drug Discovery.” Journal
of Chemical Information and Modeling 58 (9): 1736–41. https://doi.org/10.1021/acs.jcim.8b00234.
Qian, Chen, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li,
Cheng Yang, et al. 2024. “ChatDev: Communicative Agents for
Software Development.” arXiv Preprint. https://doi.org/10.48550/arXiv.2307.07924.
Qu, Jiaxing, Yuxuan Richard Xie, Kamil M. Ciesielski, Claire E. Porter,
Eric S. Toberer, and Elif Ertekin. 2023. “Leveraging
Language Representation for
Material Recommendation, Ranking,
and Exploration.” Arxiv Preprint arXiv:
2305.01101, May. https://doi.org/10.48550/arXiv.2305.01101.
Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. 2019. “Language Models Are Unsupervised Multitask
Learners.” Technical Report TR-2019-1. San Francisco, CA: OpenAI.
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.
Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. “Exploring the limits of transfer learning with a unified
text-to-text transformer.” Journal of Machine Learning
Research 21 (140): 1–67. https://www.jmlr.org/papers/v21/20-074.html.
Rajabi-Kochi, Mahyar, Negareh Mahboubi, Aseem Partap Singh Gill, and
Seyed Mohamad Moosavi. 2025. “Adaptive Representation of Molecules
and Materials in Bayesian Optimization.” Chemical
Science 16 (13): 5464–74. https://doi.org/10.1039/d5sc00200a.
Ramakrishnan, Raghunathan, Pavlo O Dral, Matthias Rupp, and O Anatole
Von Lilienfeld. 2014. “Quantum chemistry
structures and properties of 134 kilo molecules.”
Scientific Data 1 (1): 1–7. https://doi.org/10.1038/sdata.2014.22.
Ramé, Alexandre, Guillaume Couairon, Mustafa Shukor, Corentin Dancette,
Jean-Baptiste Gaya, Laure Soulier, and Matthieu Cord. 2023.
“Rewarded Soups: Towards Pareto-Optimal Alignment by
Interpolating Weights Fine-Tuned on Diverse Rewards.” Arxiv
Preprint arXiv:2306.04488, October. https://doi.org/10.48550/arXiv.2306.04488.
Ramos, Mayk Caldas, Shane S. Michtavy, Marc D. Porosoff, and Andrew D.
White. 2023. “Bayesian Optimization of Catalysis with in-Context
Learning.” arXiv Preprint arXiv: 2304.05341. https://doi.org/10.48550/arXiv.2304.05341.
Ranković, Bojana, and Philippe Schwaller. 2023. “BoChemian: Large
Language Model Embeddings for Bayesian Optimization of Chemical
Reactions.” NeurIPS 2023 Workshop on Adaptive Experimental
Design and Active Learning in the Real World. https://openreview.net/forum?id=A1RVn1m3J3.
———. 2025. “GOLLuM: Gaussian Process Optimized LLMs - Reframing
LLM Finetuning Through Bayesian Optimization.” arXiv Preprint
arXiv: 2504.06265. https://doi.org/10.48550/arXiv.2504.06265.
Raschka, Sebastian. 2018. “Model Evaluation,
Model Selection, and Algorithm Selection in Machine
Learning.” arXiv Preprint arXiv: 1811.12808. https://doi.org/10.48550/arXiv.1811.12808.
Rauschen, Robert, Mason Guy, Jason E. Hein, and Leroy Cronin. 2024.
“Universal Chemical Programming Language for Robotic Synthesis
Repeatability.” Nature Synthesis 3 (4). https://doi.org/10.1038/s44160-023-00473-6.
Reiser, Patrick, Marlen Neubert, André Eberhard, Luca Torresi, Chen
Zhou, Chen Shao, Houssam Metni, et al. 2022. “Graph Neural
Networks for Materials Science and Chemistry.” Communications
Materials 3 (1): 93. https://doi.org/10.48550/arXiv.2208.09481.
Renze, Matthew, and Erhan Guven. 2024. “Self-Reflection in LLM
Agents: Effects on Problem-Solving Performance.” arXiv
Preprint arXiv: 2405.06682. https://doi.org/10.48550/arXiv.2405.06682.
Richard, Ann M., Ruili Huang, Suramya Waidyanatha, Paul Shinn, Bradley
J. Collins, Inthirany Thillainadarajah, Christopher M. Grulke, et al.
2021. “The Tox21 10K
Compound Library: Collaborative
Chemistry Advancing
Toxicology.” Chemical Research in
Toxicology 34 (2): 189–216. https://doi.org/10.1021/acs.chemrestox.0c00264.
Riebesell, Janosh, Rhys E. A. Goodall, Philipp Benner, Yuan Chiang,
Bowen Deng, Gerbrand Ceder, Mark Asta, Alpha A. Lee, Anubhav Jain, and
Kristin A. Persson. 2025. “A Framework to Evaluate Machine
Learning Crystal Stability Predictions.” Nature Machine
Intelligence. https://doi.org/10.1038/s42256-025-01055-1.
Rives, Alexander, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin,
Jason Liu, Demi Guo, et al. 2021. “Biological
structure and function emerge from scaling unsupervised learning to 250
million protein sequences.” Proceedings of the
National Academy of Sciences 118 (15). https://doi.org/10.1073/pnas.2016239118.
Rı́os-Garcı́a, Martiño, and Kevin Maik Jablonka. 2025.
“LLM-as-Judge Meets LLM-as-Optimizer:
Enhancing Organic Data Extraction Evaluations Through Dual
LLM Approaches.” AI for Accelerated Materials
Design - ICLR. https://openreview.net/forum?id=MjQml5U1Xq.
Rock, Charles. 2018. “A Hypothesis Can’t Be Right Unless It Can Be
Proven Wrong.” https://www.stjude.org/research/progress/2018/hypothesis-must-be-falsifiable.html.
Rouleau, Nicolas, and Nirosha J. Murugan. 2025. “The
Risks and Rewards of Embodying
Artificial Intelligence with
Cloud-Based Laboratories.”
Advanced Intelligent Systems 7 (1): 2400193. https://doi.org/10.1002/aisy.202400193.
Rubungo, Andre Niyongabo, Craig Arnold, Barry P. Rand, and Adji Bousso
Dieng. 2023. “LLM-Prop: Predicting Physical And Electronic
Properties Of Crystalline Solids From Their Text
Descriptions.” arXiv Preprint arXiv: 2310.14029.
https://doi.org/10.48550/arXiv.2310.14029.
Ruffolo, Jeffrey A., and Ali Madani. 2024. “Designing proteins with language models.”
Nature Biotechnology 42 (2): 200–202. https://doi.org/10.1038/s41587-024-02123-4.
Rulev, Alexander Yu. 2017. “Serendipity or
the art of making discoveries.” New Journal of
Chemistry 41 (11): 4262–68. https://doi.org/10.1039/c7nj00182g.
Runcie, Nicholas T., Charlotte M. Deane, and Fergus Imrie. 2025.
“Assessing the Chemical Intelligence of Large Language
Models.” arXiv Preprint. https://doi.org/10.48550/arxiv.2505.07735.
Rupp, Matthias, Alexandre Tkatchenko, Klaus-Robert Müller, and O.
Anatole von Lilienfeld. 2012. “Fast and Accurate Modeling of
Molecular Atomization Energies with Machine Learning.”
Physical Review Letters 108 (5). https://doi.org/10.1103/physrevlett.108.058301.
Sakiyama, Hiroshi, Motohisa Fukuda, and Takashi Okuno. 2021.
“Prediction of
Blood-Brain Barrier
Penetration (BBBP) Based on
Molecular Descriptors of the
Free-Form and
In-Blood-Form
Datasets.” Molecules 26 (24). https://doi.org/10.3390/molecules26247428.
Sanchez-Fernandez, Ana, Elisabeth Rumetshofer, Sepp Hochreiter, and
Günter Klambauer. 2023. “CLOOME: Contrastive Learning Unlocks
Bioimaging Databases for Queries with Chemical Structures.”
Nature Communications 14 (1): 7339. https://doi.org/10.1038/s41467-023-42328-w.
Sandbrink, Jonas B. 2023. “Artificial Intelligence and Biological
Misuse: Differentiating Risks of Language Models and
Biological Design Tools.” Arxiv Preprint
arXiv:2306.13952, December. https://doi.org/10.48550/arXiv.2306.13952.
Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019.
“DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper
and Lighter.” arXiv Preprint arXiv:1910.01108. https://doi.org/10.48550/arXiv.1910.01108.
Sardiña, Víctor Juan Lamas, Daniel García-González, and Miguel Rodríguez
Luaces. 2024. “DSL-Xpert: LLM-Driven Generic DSL Code
Generation.” Proceedings of the 27th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS Companion ’24), September, 5 pages. https://doi.org/10.1145/3652620.3687782.
Satariano, Adam, and Paul Mozur. 2025. “The a.i. Race Is Splitting
the World into Haves and Have-Nots.” https://www.nytimes.com/interactive/2025/06/23/technology/ai-computing-global-divide.html.
Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. 2021.
“E (n) equivariant graph neural
networks.” International Conference on Machine
Learning, 9323–32. https://doi.org/10.48550/arXiv.2102.09844.
Savitsky, Zack. 2025. “Exclusive: Start-up FutureHouse Debuts
Powerful AI ‘Reasoning Model’ for Science.”
Nature 642 (8068): 552–53. https://doi.org/10.1038/d41586-025-01753-1.
Scheidgen, Markus, Lauri Himanen, Alvin Noe Ladines, David Sikter,
Mohammad Nakhaee, Ádám Fekete, Theodore Chang, et al. 2023. “NOMAD: A distributed web-based platform for managing
materials science research data.” Journal of Open
Source Software 8 (90): 5388. https://doi.org/10.21105/joss.05388.
Schick, Timo, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria
Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. “Toolformer: Language Models Can Teach Themselves
to Use Tools.” Advances in Neural Information Processing
Systems 36: 68539–51. https://doi.org/10.48550/arXiv.2302.04761.
Schilling-Wilhelmi, Mara, Nawaf Alampara, and Kevin Maik Jablonka. 2025.
“Lifting the Benchmark Iceberg with Item-Response Theory.”
OpenReview. https://openreview.net/forum?id=ZyVQqK7mcP.
Schilling-Wilhelmi, Mara, and Kevin Maik Jablonka. 2024. “Using
Machine-Learning and Large-Language-Model Extracted Data to Predict
Copolymerizations.” AI for Accelerated Materials Design.
https://openreview.net/forum?id=zlutCyZ12H.
Schilling-Wilhelmi, Mara, Martiño Rı́os-Garcı́a, Sherjeel Shabih, Marı́a
Victoria Gil, Santiago Miret, Christoph T Koch, José A Márquez, and
Kevin Maik Jablonka. 2025. “From text to
insight: large language models for chemical data
extraction.” Chemical Society Reviews. https://doi.org/10.1039/d4cs00913d.
Schmidgall, Samuel, and Michael Moor. 2025. “AgentRxiv: Towards
Collaborative Autonomous Research.” arXiv Preprint arXiv:
2503.18102. https://doi.org/10.48550/arXiv.2503.18102.
Schmidgall, Samuel, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu,
Xiaodong Yu, Jiang Liu, Michael Moor, Zicheng Liu, and Emad Barsoum.
2025. “Agent Laboratory: Using LLM Agents as Research
Assistants.” arXiv Preprint arXiv: 2501.04227. https://doi.org/10.48550/arXiv.2501.04227.
Schmidinger, Niklas, Lisa Schneckenreiter, Philipp Seidl, Johannes
Schimunek, Pieter-Jan Hoedt, Johannes Brandstetter, Andreas Mayr, Sohvi
Luukkonen, Sepp Hochreiter, and Günter Klambauer. 2025.
“Bio-xLSTM: Generative Modeling, Representation and in-Context
Learning of Biological and Chemical Sequences.” The
Thirteenth International Conference on Learning Representations,
ICLR. https://doi.org/10.48550/arXiv.2411.04165.
Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. 2017. “Proximal Policy Optimization Algorithms.”
arXiv Preprint arXiv: 1707.06347. https://doi.org/10.48550/arXiv.1707.06347.
Schwaller, Philippe, Teodoro Laino, Théophile Gaudin, Peter Bolgar,
Christopher A Hunter, Costas Bekas, and Alpha A Lee. 2019.
“Molecular Transformer: A Model for Uncertainty-Calibrated
Chemical Reaction Prediction.” ACS Central Science 5
(9): 1572–83. https://doi.org/10.1021/acscentsci.9b00576.
Schwaller, Philippe, Daniel Probst, Alain C. Vaucher, Vishnu H. Nair,
David Kreutter, Teodoro Laino, and Jean-Louis Reymond. 2021.
“Mapping the Space of Chemical Reactions Using Attention-Based
Neural Networks.” Nature Machine Intelligence 3 (2):
144–52. https://doi.org/10.1038/s42256-020-00284-w.
Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014.
“Machine Learning: The High Interest Credit Card of Technical
Debt.” SE4ML: Software Engineering for Machine Learning (NIPS
2014 Workshop) 8. https://research.google/pubs/machine-learning-the-high-interest-credit-card-of-technical-debt/.
Segler, Marwin, Mike Preuß, and Mark P Waller. 2017. “Towards"
Alphachem": Chemical Synthesis Planning with Tree Search and Deep Neural
Network Policies.” arXiv Preprint arXiv:1702.00020. https://doi.org/10.48550/arXiv.1702.00020.
Seifrid, Martin, Robert Pollice, Andrés Aguilar-Granda, Zamyla Morgan
Chan, Kazuhiro Hotta, Cher Tian Ser, Jenya Vestfrid, Tony C. Wu, and
Alán Aspuru-Guzik. 2022. “Autonomous Chemical Experiments:
Challenges and Perspectives on Establishing a Self-Driving Lab.”
Accounts of Chemical Research 55 (17): 2454–66. https://doi.org/10.1021/acs.accounts.2c00220.
Selivanov, Alexander, Oleg Y Rogov, Daniil Chesakov, Artem Shelmanov,
Irina Fedulova, and Dmitry V Dylov. 2023. “Medical image captioning via generative pretrained
transformers.” Scientific Reports 13 (1): 4171.
https://doi.org/10.1038/s41598-023-31223-5.
Shabih, Sherjeel, Christoph T Koch, Kevin Maik Jablonka, and José A.
Márquez. 2025. “Automated Data Extraction from Solar Cell
Literature Using Large Language Models.” AI for Accelerated
Materials Design - ICLR. https://openreview.net/forum?id=gwLX7cdESk.
Shao, Zekai, Siyu Yuan, Lin Gao, Yixuan He, Deqing Yang, and Siming
Chen. 2025. “Unlocking Scientific Concepts:
How Effective Are LLM-Generated Analogies for Student Understanding and
Classroom Practice?” arXiv Preprint arXiv:
2502.16895. https://doi.org/10.48550/arXiv.2502.16895.
Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi,
Haowei Zhang, et al. 2024. “DeepSeekMath:
Pushing the Limits of Mathematical Reasoning in Open Language
Models.” arXiv Preprint arXiv: 2402.03300. https://doi.org/10.48550/arXiv.2402.03300.
Sharma, Sahil, Puneet Mittal, Mukesh Kumar, and Vivek Bhardwaj. 2025.
“The role of large language models in
personalized learning: a systematic review of educational
impact.” Discover Sustainability 6 (1). https://doi.org/10.1007/s43621-025-01094-z.
Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. 2017. “Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.”
arXiv Preprint arXiv:1701.06538. https://doi.org/10.48550/arXiv.1701.06538.
Shields, Benjamin J., Jason Stevens, Jun Li, Marvin Parasram, Farhan
Damani, Jesus I. Martinez Alvarado, Jacob M. Janey, Ryan P. Adams, and
Abigail G. Doyle. 2021. “Bayesian Reaction Optimization as a Tool
for Chemical Synthesis.” Nature 590 (7844): 89–96. https://doi.org/10.1038/s41586-021-03213-y.
Shoghi, Nima, Adeesh Kolluru, John R. Kitchin, Zachary W. Ulissi, C. L.
Zitnick, and Brandon M. Wood. 2023. “From Molecules to Materials:
Pre-Training Large Generalizable Models for Atomic Property
Prediction.” International Conference on Learning
Representations. https://doi.org/10.48550/arXiv.2310.16802.
Shorten, Connor, and Taghi M Khoshgoftaar. 2019. “A survey on image data augmentation for deep
learning.” Journal of Big Data 6 (1): 1–48. https://doi.org/10.1186/s40537-019-0197-0.
Shorten, Connor, Taghi M Khoshgoftaar, and Borko Furht. 2021.
“Text data augmentation for deep
learning.” Journal of Big Data 8 (1): 101. https://doi.org/10.1186/s40537-021-00492-0.
Shumailov, Ilia, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross
Anderson, and Yarin Gal. 2024. “AI Models Collapse When Trained on
Recursively Generated Data.” Nature 631 (8022): 755–59.
https://doi.org/10.1038/s41586-024-07566-y.
Si, Chenglei, Tatsunori Hashimoto, and Diyi Yang. 2025. “The
Ideation-Execution Gap: Execution Outcomes of LLM-Generated Versus Human
Research Ideas.” arXiv Preprint arXiv: 2506.20803. https://doi.org/10.48550/arXiv.2506.20803.
Si, Chenglei, Diyi Yang, and Tatsunori Hashimoto. 2025. “Can LLMs
Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP
Researchers.” International Conference on Learning
Representations. https://doi.org/10.48550/arXiv.2409.04109.
Silver, David, and Richard S Sutton. 2025. “Welcome to the Era of
Experience.” Google AI 1.
Singh, Nikhil, Lucy Lu Wang, and Jonathan Bragg. 2024. “Figura11y: Ai assistance for writing scientific alt
text.” Proceedings of the 29th International
Conference on Intelligent User Interfaces, 886–906. https://doi.org/10.1145/3640543.3645212.
Siska, Charlotte, Katerina Marazopoulou, Melissa Ailem, and James Bono.
2024. “Examining the robustness of LLM
evaluation to the distributional assumptions of
benchmarks.” Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), 10406–21. https://doi.org/10.18653/v1/2024.acl-long.560.
Skalse, Joar, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger.
2022. “Defining and Characterizing Reward Hacking.”
Advances in Neural Information Processing Systems 35. https://doi.org/10.48550/arXiv.2209.13085.
Skarlinski, Michael D, Sam Cox, Jon M Laurent, James D Braza, Michaela
Hinks, Michael J Hammerling, Manvitha Ponnapati, Samuel G Rodriques, and
Andrew D White. 2024. “Language Agents Achieve Superhuman
Synthesis of Scientific Knowledge.” arXiv Preprint
arXiv:2409.13740. https://doi.org/10.48550/arXiv.2409.13740.
Skinnider, Michael A. 2024. “Invalid SMILES
are beneficial rather than detrimental to chemical language
models.” Nature Machine Intelligence 6 (4):
437–48. https://doi.org/10.1038/s42256-024-00821-x.
Soares, Eduardo, Victor Yukio Shirasuna, Emilio Vital Brazil, Indra
Priyadarsini, and Seiji Takeda. 2025. “Multi-View
Mixture-of-Experts for Predicting Molecular Properties Using SMILES,
SELFIES, and Graph-Based Representations.” Machine Learning:
Science and Technology 6 (June): 025070. https://doi.org/10.1088/2632-2153/ade4ef.
Soares, Eduardo, Emilio Vital Brazil, Victor Shirasuna, Dmitry Zubarev,
Renato Cerqueira, and Kristin Schmidt. 2025. “A Mamba-Based
Foundation Model for Materials.” Npj Artificial
Intelligence 1 (1): 1–8. https://doi.org/10.1038/s44387-025-00009-7.
Son, Guijin, Jiwoo Hong, Honglu Fan, Heejeong Nam, Hyunwoo Ko, Seungwon
Lim, Jinyeop Song, et al. 2025. “When AI Co-Scientists Fail:
SPOT-a Benchmark for Automated Verification of Scientific
Research.” arXiv Preprint arXiv: 2505.11855. https://doi.org/10.48550/arXiv.2505.11855.
Song, Chan Hee, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun
Chao, and Yu Su. 2023. “Llm-Planner: Few-Shot Grounded Planning
for Embodied Agents with Large Language Models.” Proceedings
of the IEEE/CVF International Conference on Computer Vision,
2998–3009. https://doi.org/10.1109/ICCV51070.2023.00280.
Spotte-Smith, Evan Walter Clark. 2025. “Considering the
Ethics of Large Machine
Learning Models in the Chemical
Sciences.” ChemRxiv Preprint, March. https://doi.org/10.26434/chemrxiv-2025-ct5k8.
Srinivas, Sakhinana Sagar, and Venkataramana Runkana. 2024a.
“Crossing New Frontiers: Knowledge-Augmented Large Language Model
Prompting for Zero-Shot Text-Based de Novo Molecule Design.”
arXiv Preprint arXiv: 2408.11866. https://doi.org/10.48550/arXiv.2408.11866.
———. 2024b. “Cross-Modal Learning for
Chemistry Property Prediction:
Large Language Models
Meet Graph Machine
Learning.” Arxiv Preprint arXiv:
2408.14964, August. https://doi.org/10.48550/arXiv.2408.14964.
Sriram, Anuroop, Benjamin Kurt Miller, Ricky T. Q. Chen, and Brandon M.
Wood. 2024. “FlowLLM: Flow
Matching for Material Generation
with Large Language Models as
Base Distributions.” Arxiv Preprint
arXiv, October. https://doi.org/10.48550/arXiv.2410.23405.
Stanley, Kenneth O., and Joel Lehman. 2015. Why Greatness Cannot Be
Planned: The Myth of the Objective. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-15524-1.
Stanley, Kenneth O., Joel Lehman, and Lisa Soros. 2017.
“Open-Endedness: The Last Grand Challenge You’ve Never Heard
Of.” https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-never-heard-of/.
Starace, Giulio, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern
Chan, Leon Maksin, Rachel Dias, et al. 2025. “PaperBench:
Evaluating AI’s Ability to Replicate AI Research.” arXiv
Preprint arXiv: 2504.01848. https://doi.org/10.48550/arXiv.2504.01848.
“Statement on AI Risk
CAIS.” n.d. Accessed May 24, 2025. https://www.safe.ai/work/statement-on-ai-risk.
Stechly, Kaya, Karthik Valmeekam, and Subbarao Kambhampati. 2024.
“Chain of Thoughtlessness? An Analysis of Cot in Planning.”
The Thirty-Eighth Annual Conference on Neural Information Processing
Systems. https://doi.org/10.48550/arXiv.2405.04776.
Steiner, Sebastian, Jakob Wolf, Stefan Glatzel, Anna Andreou, Jarosław
M. Granda, Graham Keenan, Trevor Hinkley, et al. 2019. “Organic
Synthesis in a Modular Robotic System Driven by a Chemical Programming
Language.” Science 363 (6423): eaav2211. https://doi.org/10.1126/science.aav2211.
Strateos. 2023. “Autoprotocol Specification.” https://autoprotocol.org/specification/.
Strieth-Kalthoff, Felix, Han Hao, Vandana Rathore, Joshua Derasp,
Théophile Gaudin, Nicholas H. Angello, Martin Seifrid, et al. 2024.
“Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser
Emitters.” Science 384 (6697): eadk9227. https://doi.org/10.1126/science.adk9227.
Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “Energy
and Policy Considerations for Deep Learning in NLP.” arXiv
Preprint arXiv: 1906.02243. https://doi.org/10.48550/arXiv.1906.02243.
Subasinghe, S. M. Supundrika, Simon G. Gersib, and Neal P. Mankad. 2025.
“Large Language Models (LLMs) as Graphing
Tools for Advanced Chemistry Education and Research.”
Journal of Chemical Education, March. https://doi.org/10.1021/acs.jchemed.4c01498.
Sun, Kunyang, Dorian Bagni, Joseph M. Cavanagh, Yingze Wang, Jacob M.
Sawyer, Andrew Gritsevskiy, Oufan Zhang, and Teresa Head-Gordon. 2025.
“SynLlama: Generating
Synthesizable Molecules and Their
Analogs with Large Language
Models.” Arxiv Preprint arXiv: 2503.12602,
April. https://doi.org/10.48550/arXiv.2503.12602.
Sun, Liangtai, Danyu Luo, Da Ma, Zihan Zhao, Baocai Chen, Zhennan Shen,
Su Zhu, Lu Chen, Xin Chen, and Kai Yu. 2024. “SciDFM: A Large
Language Model with Mixture-of-Experts for Science.” arXiv
Preprint arXiv:2409.18412. https://doi.org/10.48550/arXiv.2409.18412.
Sypetkowski, Maciej, Frederik Wenkel, Farimah Poursafaei, Nia Dickson,
Karush Suri, Philip Fradkin, and Dominique Beaini. 2024. “On the
Scalability of Gnns for Molecular Graphs.” Advances in Neural
Information Processing Systems 37: 19870–906. https://doi.org/10.48550/arXiv.2404.11568.
Taber, Keith S. 2014. “The Significance of Implicit Knowledge for
Learning and Teaching Chemistry.” Chem. Educ. Res.
Pract. 15 (4): 447–61. https://doi.org/10.1039/c4rp00124a.
Takeda, Seiji, Indra Priyadarsini, Akihiro Kishimoto, Hajime Shinohara,
Lisa Hamada, Hirose Masataka, Junta Fuchiwaki, and Daiju Nakano. 2023.
“Multi-Modal Foundation Model for Material Design.” AI
for Accelerated Materials Design-NeurIPS 2023 Workshop. https://openreview.net/forum?id=EiT2bLsfM9.
Tang, Xiangru, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang,
Wangchunshu Zhou, Meng Qu, et al. 2024. “Prioritizing
Safeguarding Over Autonomy:
Risks of LLM Agents for
Science.” Arxiv Preprint arXiv: 2402.04247,
June. https://doi.org/10.48550/arXiv.2402.04247.
Taylor, Connor J., Alexander Pomberger, Kobi C. Felton, Rachel Grainger,
Magda Barecka, Thomas W. Chamberlain, Richard A. Bourne, Christopher N.
Johnson, and Alexei A. Lapkin. 2023. “A Brief Introduction to
Chemical Reaction Optimization.” Chemical Reviews 123
(6): 3089–3126. https://doi.org/10.1021/acs.chemrev.2c00798.
Taylor, Ross, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony
Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert
Stojnic. 2022. “Galactica: A Large Language Model for
Science.” arXiv Preprint arXiv:2211.09085. https://doi.org/10.48550/arXiv.2211.09085.
The Danish National Committee on Health Research Ethics. 2024.
“Hypothesis-Generating Research.” https://researchethics.dk/guidelines/-guidance-on-hypothesis-generating-research.
Thompson, Derek. 2025. “Why Chatbots Keep
Beating the Tests.” The Atlantic, March. https://www.theatlantic.com/technology/archive/2025/03/chatbots-benchmark-tests/681929/.
Thrush, Tristan, Christopher Potts, and Tatsunori Hashimoto. 2024.
“Improving Pretraining Data Using Perplexity Correlations.”
arXiv Preprint arXiv:2409.05816. https://doi.org/10.48550/arXiv.2409.05816.
Tian, Minyang, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei
Guo, Roland Haas, et al. 2024. “Scicode: A Research Coding
Benchmark Curated by Scientists.” Advances in Neural
Information Processing Systems 37: 30624–50. https://doi.org/10.48550/arXiv.2407.13168.
Tian, Siyu Isaac Parker, Aron Walsh, Zekun Ren, Qianxiao Li, and Tonio
Buonassisi. 2022. “What Information is
Necessary and Sufficient to Predict Materials Properties using Machine
Learning?” arXiv Preprint. https://doi.org/10.48550/arXiv.2206.04968.
Tikhonov, Alexey, and Ivan P. Yamshchikov. 2023. “Post Turing: Mapping the landscape of LLM
Evaluation.” arXiv Preprint arXiv: 2311.02049. https://doi.org/10.48550/arXiv.2311.02049.
Tom, Gary, Stefan P. Schmid, Sterling G. Baird, Yang Cao, Kourosh
Darvish, Han Hao, Stanley Lo, et al. 2024. “Self-Driving
Laboratories for Chemistry and Materials Science.” Chemical
Reviews 124 (16): 9633–732. https://doi.org/10.1021/acs.chemrev.4c00055.
Trager, Robert, Ben Harack, Anka Reuel, Allison Carnegie, Lennart Heim,
Lewis Ho, Sarah Kreps, et al. 2023. “International
Governance of Civilian AI:
A Jurisdictional Certification
Approach.” Arxiv Preprint arXiv:
2308.15514, September. https://doi.org/10.48550/arXiv.2308.15514.
Trewartha, Amalie, Nicholas Walker, Haoyan Huo, Sanghoon Lee, Kevin
Cruse, John Dagdelen, Alexander Dunn, Kristin A Persson, Gerbrand Ceder,
and Anubhav Jain. 2022. “Quantifying the Advantage of
Domain-Specific Pre-Training on Named Entity Recognition Tasks in
Materials Science.” Patterns 3 (4).
Trinh, Trieu H, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. 2024.
“Solving olympiad geometry without human
demonstrations.” Nature 625 (7995): 476–82. https://doi.org/10.1038/s41586-023-06747-5.
Tsai, Meng-Lin, Chong Wei Ong, and Cheng-Liang Chen. 2023. “Exploring the use of large language models (LLMs) in
chemical engineering education: Building core course problem models with
Chat-GPT.” Education for Chemical Engineers 44
(July): 71–95. https://doi.org/10.1016/j.ece.2023.05.001.
Tshitoyan, Vahe, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin
Rong, Olga Kononova, Kristin A. Persson, Gerbrand Ceder, and Anubhav
Jain. 2019. “Unsupervised Word Embeddings Capture Latent Knowledge
from Materials Science Literature.” Nature 571 (7763):
95–98. https://doi.org/10.1038/s41586-019-1335-8.
Tu, Zhengkai, Sourabh J Choure, Mun Hong Fong, Jihye Roh, Itai Levin,
Kevin Yu, Joonyoung F Joung, et al. 2025. “ASKCOS: an open source software suite for synthesis
planning.” arXiv Preprint arXiv:2501.01835. https://doi.org/10.48550/arXiv.2501.01835.
Unke, Oliver T, Stefan Chmiela, Huziel E Sauceda, Michael Gastegger,
Igor Poltavsky, Kristof T Schutt, Alexandre Tkatchenko, and Klaus-Robert
Muller. 2021. “Machine learning force
fields.” Chemical Reviews 121 (16): 10142–86. https://doi.org/10.1021/acs.chemrev.0c01111.
Urbina, Fabio, Filippa Lentzos, Cedric Invernizzi, and Sean Ekins. 2022.
“Dual use of artificial-intelligence-powered
drug discovery.” Nature Machine Intelligence 4
(3): 189–91. https://doi.org/10.1038/s42256-022-00465-9.
Van Herck, Joren, Marı́a Victoria Gil, Kevin Maik Jablonka, Alex Abrudan,
Andy S. Anker, Mehrdad Asgari, Ben Blaiszik, et al. 2025. “Assessment of fine-tuned large language models for
real-world chemistry and material science applications.”
Chemical Science 16 (2): 670–84. https://doi.org/10.1039/D4SC04401K.
Vangala, Sarveswara Rao, Sowmya Ramaswamy Krishnan, Navneet Bung,
Dhandapani Nandagopal, Gomathi Ramasamy, Satyam Kumar, Sridharan
Sankaran, Rajgopal Srinivasan, and Arijit Roy. 2024. “Suitability
of Large Language Models for Extraction of High-Quality Chemical
Reaction Dataset from Patent Literature.” Journal of
Cheminformatics 16 (1): 131. https://doi.org/10.1186/s13321-024-00928-8.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” NEURIPS. https://doi.org/10.48550/arXiv.1706.03762.
Vaucher, Alain C., Federico Zipoli, Joppe Geluykens, Vishnu H. Nair,
Philippe Schwaller, Teodoro Laino, et al. 2020. “Automated
Extraction of Chemical Synthesis Actions from Experimental
Procedures.” Nature Communications 11 (1). https://doi.org/10.1038/s41467-020-17266-6.
Veličković, Petar. 2023. “Everything Is Connected: Graph Neural
Networks.” Current Opinion in Structural Biology 79:
102538. https://doi.org/10.1016/j.sbi.2023.102538.
Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. 2008. “Extracting and Composing Robust Features with
Denoising Autoencoders.” Proceedings of the 25th
International Conference on Machine Learning, 1096–1103. https://doi.org/10.1145/1390156.1390294.
Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
Pierre-Antoine Manzagol, and Léon Bottou. 2010. “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion.” Journal of Machine Learning Research
11 (12). https://jmlr.org/papers/v11/vincent10a.html.
Von Oswald, Johannes, Eyvind Niklasson, Ettore Randazzo, João
Sacramento, Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov.
2023. “Transformers Learn in-Context by Gradient Descent.”
International Conference on Machine Learning, 35151–74. https://doi.org/10.48550/arXiv.2212.07677.
Vriza, Aikaterini, Henry C. Chan, Jie Xu, Keith L. Barnett, Ian
Staffell, Oleksandr Stanevich, Siqi Du, et al. 2023. “Self-Driving
Laboratory for Polymer Electronics.” Chemistry of
Materials 35 (8): 3046–56. https://doi.org/10.1021/acs.chemmater.2c03593.
Wan, Yuwei, Tong Xie, Nan Wu, Wenjie Zhang, Chunyu Kit, and Bram Hoex.
2024. “From Tokens to Materials: Leveraging Language Models for
Scientific Discovery.” arXiv Preprint arXiv: 2410.16165.
https://doi.org/10.48550/arXiv.2410.16165.
Wang, Anthony Yu-Tung, Steven K. Kauwe, Ryan J. Murdock, and Taylor D.
Sparks. 2021. “Compositionally restricted
attention-based network for materials property
predictions.” Npj Computational Materials 7 (1).
https://doi.org/10.1038/s41524-021-00545-1.
Wang, Chengshi, Yeon-Ju Kim, Aikaterini Vriza, Rohit Batra, Arun
Baskaran, Naisong Shan, Nan Li, et al. 2025. “Autonomous Platform
for Solution Processing of Electronic Polymers.” Nature
Communications 16 (1): 1498. https://doi.org/10.1038/s41467-024-55655-3.
Wang, Evan, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song,
Vaskar Nath, Ziwen Han, Sean Hendryx, Summer Yue, and Hugh Zhang. 2024.
“Planning in Natural Language Improves Llm Search for Code
Generation.” arXiv Preprint arXiv:2409.03733. https://doi.org/10.48550/arXiv.2409.03733.
Wang, Hanchen, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming
Liu, Payal Chandak, et al. 2023. “Scientific Discovery in the Age
of Artificial Intelligence.” Nature 620 (7972): 47–60.
https://doi.org/10.1038/s41586-023-06221-2.
Wang, Haorui, Jeff Guo, Lingkai Kong, Rampi Ramprasad, Philippe
Schwaller, Yuanqi Du, and Chao Zhang. 2025. “LLM-Augmented
Chemical Synthesis and Design Decision Programs.” arXiv
Preprint arXiv: 2505.07027. https://doi.org/10.48550/arXiv.2505.07027.
Wang, Haorui, Marta Skreta, Cher Tian Ser, Wenhao Gao, Lingkai Kong,
Felix Strieth-Kalthoff, Chenru Duan, et al. 2025. “Efficient
Evolutionary Search over Chemical Space with Large Language
Models.” The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28,
2025. https://doi.org/10.48550/arXiv.2406.16976.
Wang, Jin, and Wenxiang Fan. 2025. “The Effect of ChatGPT on
Students’ Learning Performance, Learning Perception, and Higher-Order
Thinking: Insights from a Meta-Analysis.” Humanities and
Social Sciences Communications 12 (1). https://doi.org/10.1057/s41599-025-04787-y.
Wang, Qingyun, Doug Downey, Heng Ji, and Tom Hope. 2023. “SciMON:
Scientific Inspiration Machines Optimized for Novelty.” arXiv
Preprint arXiv: 2305.14259. https://doi.org/10.48550/arXiv.2305.14259.
Wang, Xinyu Jessica, Christine Lee, and Bilge Mutlu. 2025. “LearnMate: Enhancing Online Education with LLM-Powered
Personalized Learning Plans and Support.” CHI Extended
Abstracts. https://doi.org/10.1145/3706599.3719857.
Wang, Ye, Honggang Zhao, Simone Sciabola, and Wenlu Wang. 2023.
“cMolGPT: A Conditional Generative Pre-Trained Transformer for
Target-Specific de Novo Molecular Generation.” Molecules
28 (11): 4430. https://doi.org/10.3390/molecules28114430.
Wang, Yuyang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani.
2022. “Molecular Contrastive Learning of Representations via Graph
Neural Networks.” Nature Machine Intelligence 4 (3):
279–87. https://doi.org/10.1038/s42256-022-00447-x.
Wang, Yuyang, Changwen Xu, Zijie Li, and Amir Barati Farimani. 2023.
“Denoise Pretraining on Nonequilibrium Molecules for Accurate and
Transferable Neural Potentials.” Journal of Chemical Theory
and Computation 19 (15): 5077–87. https://doi.org/10.1021/acs.jctc.3c00289.
Wang, Zhenbin, Kevin Cruse, Yifei Fei, Aaron Chia, Yihuang Zeng, Haozhe
Huo, Tianxiao He, Bowen Deng, Olga Kononova, and Gerbrand Ceder. 2022.
“ULSA: Unified Language of Synthesis Actions for the
Representation of Inorganic Synthesis Protocols.” Digital
Discovery 1 (3): 313–24. https://doi.org/10.1039/D2DD00049D.
Warr, Wendy A. 2014. “A short review of
chemical reaction database systems, computer-aided synthesis design,
reaction prediction and synthetic feasibility.”
Molecular Informatics 33 (6-7): 469–76. https://doi.org/10.1002/minf.201400052.
Wei, Jason, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa
Fulford, Hyung Won Chung, Alex Tachard Passos, William Fedus, and Amelia
Glaese. 2025. “Browsecomp: A Simple yet Challenging Benchmark for
Browsing Agents.” arXiv Preprint arXiv:2504.12516. https://doi.org/10.48550/arXiv.2504.12516.
Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed
Chi, Quoc V Le, Denny Zhou, et al. 2022. “Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models.”
Advances in Neural Information Processing Systems 35: 24824–37.
https://doi.org/10.48550/arXiv.2201.11903.
Wei, Jason, and Kai Zou. 2019. “EDA: Easy
Data Augmentation Techniques for Boosting Performance on Text
Classification Tasks.” arXiv Preprint. https://doi.org/10.48550/arXiv.1901.11196.
Weininger, David. 1988. “SMILES, a Chemical Language
and Information System. 1. Introduction to Methodology and
Encoding Rules.” Journal of Chemical Information and Computer
Sciences 28 (1). https://doi.org/10.1021/ci00057a005.
Wellawatte, Geemi P, and Philippe Schwaller. 2025. “Human interpretable structure-property relationships in
chemistry using explainable machine learning and large language
models.” Communications Chemistry 8 (1): 11. https://doi.org/10.1038/s42004-024-01393-y.
Wellawatte, Geemi P, Aditi Seshadri, and Andrew D White. 2022.
“Model Agnostic Generation of Counterfactual Explanations for
Molecules.” Chemical Science 13 (13): 3697–3705. https://doi.org/10.1039/d1sc05259d.
Weng, Lilian. 2022. “Generalized Visual Language Models.”
Lil’Log, June. https://lilianweng.github.io/posts/2022-06-09-vlm/.
Wenzel, Makarius, Lawrence C Paulson, and Tobias Nipkow. 2008.
“The isabelle framework.”
International Conference on Theorem Proving in Higher Order
Logics, 33–38. https://doi.org/10.1007/978-3-540-71067-7_7.
White, Andrew D. 2023. “The future of
chemistry is language.” Nature Reviews Chemistry
7 (7): 457–58. https://doi.org/10.1038/s41570-023-00502-0.
Wierenga, Rick P., Stefan M. Golas, Wilson Ho, Connor W. Coley, and
Kevin M. Esvelt. 2023. “PyLabRobot: An Open-Source,
Hardware-Agnostic Interface for Liquid-Handling Robots and
Accessories.” Device 1 (4): 100111. https://doi.org/10.1016/j.device.2023.100111.
Wilbraham, Liam, S. Hessam M. Mehr, and Leroy Cronin. 2021.
“Digitizing Chemistry Using the Chemical Processing Unit: From
Synthesis to Discovery.” Accounts of Chemical Research
54 (2): 253–62. https://doi.org/10.1021/acs.accounts.0c00674.
Wilson, Andrew Gordon. 2025. “Deep Learning
is Not So Mysterious or Different.” arXiv Preprint
arXiv: 2503.02113. https://doi.org/10.48550/arXiv.2503.02113.
Wood, Brandon M., Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi,
Luis Barroso-Luque, Kareem Abdelmaqsoud, et al. 2025. “UMA: A
Family of Universal Models for Atoms.” arXiv Preprint.
https://doi.org/10.48550/arXiv.2506.23971.
Wu, Jianchang, Luca Torresi, ManMan Hu, Patrick Reiser, Jiyun Zhang,
Juan S. Rocha-Ortiz, Luyao Wang, et al. 2024. “Inverse Design
Workflow Discovers Hole-Transport Materials Tailored for Perovskite
Solar Cells.” Science 386 (6727): 1256–64. https://doi.org/10.1126/science.ads0901.
Wu, Juan-Ni, Tong Wang, Yue Chen, Li-Juan Tang, Hai-Long Wu, and Ru-Qin
Yu. 2024. “t-SMILES: a fragment-based
molecular representation framework for de novo ligand
design.” Nature Communications 15 (1): 4993. https://doi.org/10.1038/s41467-024-49388-6.
Wu, Qingyun, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu,
Li Jiang, et al. 2023. “Autogen: Enabling Next-Gen Llm
Applications via Multi-Agent Conversation.” arXiv Preprint
arXiv:2308.08155. https://doi.org/10.48550/arXiv.2308.08155.
Wu, Tongwei, Yao Sun, Xiaoxi Guo, Lin Tian, Yanning Zhang, Haitao Zhao,
and Yuen Wu. 2025. “A Large Language Models-Guided Grand Canonical
DFT Framework for Accelerating the Discovery of Efficient
Electrocatalysts.”
Wu, Yuhuai, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats,
Mateja Jamnik, and Christian Szegedy. 2022. “Autoformalization with Large Language
Models.” Advances in Neural Information Processing
Systems 35: 32353–68. https://doi.org/10.48550/arXiv.2205.12615.
Wu, Zhenqin, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. 2018.
“MoleculeNet: a benchmark for molecular
machine learning.” Chemical Science 9 (2):
513–30. https://doi.org/10.1039/c7sc02664a.
Xiao, Hang, Rong Li, Xiaoyang Shi, Yan Chen, Liangliang Zhu, Xi Chen,
and Lei Wang. 2023. “An invertible, invariant
crystal representation for inverse design of solid-state materials using
generative deep learning.” Nature Communications
14 (1). https://doi.org/10.1038/s41467-023-42870-7.
Xie, Tong, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang,
Qingyuan Linghu, et al. 2023. “Darwin series:
Domain specific large language models for natural
science.” arXiv Preprint arXiv:2308.13565. https://doi.org/10.48550/arXiv.2308.13565.
Xie, Tong, Yuwei Wan, Yixuan Liu, Yuchen Zeng, Shaozhou Wang, Wenjie
Zhang, Clara Grazian, et al. 2025. “DARWIN 1.5:
Large Language Models as
Materials Science Adapted
Learners.” Arxvi Preprint arXiv:2412.11970,
January. https://doi.org/10.48550/arXiv.2412.11970.
Xin, Huajian, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu,
Chong Ruan, Wenda Li, and Xiaodan Liang. 2024. “Deepseek-prover: Advancing theorem proving in llms
through large-scale synthetic data.” arXiv Preprint
arXiv:2405.14333. https://doi.org/10.48550/arXiv.2405.14333.
Xu, Fengli, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi
Wang, Xiaochong Lan, et al. 2025. “Towards Large Reasoning Models:
A Survey of Reinforced Reasoning with Large Language Models.”
arXiv Preprint. https://doi.org/10.48550/arXiv.2501.09686.
Yamada, Yutaro, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu,
Jakob Foerster, Jeff Clune, and David Ha. 2025. “The AI
Scientist-V2: Workshop-Level Automated Scientific Discovery via Agentic
Tree Search.” arXiv Preprint arXiv: 2504.08066. https://doi.org/10.48550/arXiv.2504.08066.
Yan, Cong, and Yeye He. 2020. “Auto-Suggest: Learning-to-Recommend
Data Preparation Steps Using Data Science Notebooks.”
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD/PODS ’20, May. https://doi.org/10.1145/3318464.3389738.
Yang, Chengrun, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny
Zhou, and Xinyun Chen. 2023. “Large Language Models as
Optimizers.” arXiv Preprint arXiv: 2309.03409. https://doi.org/10.48550/arXiv.2309.03409.
Yang, Wuyue, Liangrong Peng, Yi Zhu, and Liu Hong. 2020. “When machine learning meets multiscale modeling in
chemical reactions.” The Journal of Chemical
Physics 153 (9). https://doi.org/10.1063/5.0015779.
Yang, Yuzhe, Yujia Liu, Xin Liu, Avanti Gulhane, Domenico Mastrodicasa,
Wei Wu, Edward J. Wang, Dushyant W. Sahani, and Shwetak Patel. 2024.
“Demographic Bias of
Expert-Level
Vision-Language Foundation
Models in Medical
Imaging.” arXiv Preprint arXiv:2402.14815,
February. https://doi.org/10.48550/arXiv.2402.14815.
Yang, Zonglin, Wanhao Liu, Ben Gao, Yujie Liu, Wei Li, Tong Xie, Lidong
Bing, Wanli Ouyang, Erik Cambria, and Dongzhan Zhou. 2025.
“MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific
Hypothesis Discovery via Hierarchical Search.” arXiv Preprint
arXiv: 2505.19209. https://doi.org/10.48550/arXiv.2505.19209.
Yang, Zonglin, Wanhao Liu, Ben Gao, Tong Xie, Yuqiang Li, Wanli Ouyang,
Soujanya Poria, Erik Cambria, and Dongzhan Zhou. 2025.
“MOOSE-Chem: Large Language Models for Rediscovering Unseen
Chemistry Scientific Hypotheses.” The Thirteenth
International Conference on Learning Representations,
ICLR. https://doi.org/10.48550/arXiv.2410.07076.
Yano, Junko, Kelly J Gaffney, John Gregoire, Linda Hung, Abbas Ourmazd,
Joshua Schrier, James A Sethian, and Francesca M Toma. 2022.
“The case for data science in experimental
chemistry: examples and recommendations.” Nature
Reviews Chemistry 6 (5): 357–70. https://doi.org/10.1038/s41570-022-00382-w.
Yao, Shunyu, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2023. “React: Synergizing Reasoning and
Acting in Language Models.” International Conference on
Learning Representations (ICLR). https://doi.org/10.48550/arXiv.2210.03629.
Yao, Zhenpeng, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza,
Xin Zhou, Yonggang Wen, Alán Aspuru-Guzik, Edward H. Sargent, and Zhi
Wei Seh. 2022. “Machine Learning for a Sustainable Energy
Future.” Nature Reviews Materials 8 (3): 202–15. https://doi.org/10.1038/s41578-022-00490-5.
Yona, Itay, Ilia Shumailov, Jamie Hayes, and Nicholas Carlini. 2024.
“Stealing User Prompts from Mixture of Experts.” Arxiv
Preprint, no. arXiv:2410.22884 (October). https://doi.org/10.48550/arXiv.2410.22884.
Yoshikai, Yasuhiro, Tadahaya Mizuno, Shumpei Nemoto, and Hiroyuki
Kusuhara. 2024. “A Novel Molecule Generative Model of VAE Combined
with Transformer for Unseen Structure Generation.” arXiv
Preprint arXiv: 2402.11950. https://doi.org/10.48550/arXiv.2402.11950.
Yoshikawa, Naruki, Marta Skreta, Kourosh Darvish, Sebastian
Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen, Andrew Zou Li, et al.
2023. “Large Language Models for Chemistry Robotics.”
Autonomous Robots 47 (8): 1057–86. https://doi.org/10.1007/s10514-023-10136-2.
Yu, Botao, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. 2024.
“LlaSMol: Advancing Large Language Models for
Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction
Tuning Dataset.” arXiv Preprint arXiv:
2402.09391. https://doi.org/10.48550/arXiv.2402.09391.
Yu, Jiajun, Yizhen Zheng, Huan Yee Koh, Shirui Pan, Tianyue Wang, and
Haishuai Wang. 2025. “Collaborative Expert LLMs Guided
Multi-Objective Molecular Optimization.” arXiv Preprint.
https://doi.org/10.48550/arXiv.2503.03503.
Zaki, Mohd, Jayadeva, Mausam, and N. M. Anoop Krishnan. 2023.
“MaScQA: A Question Answering Dataset for
Investigating Materials Science Knowledge of Large Language
Models.” arXiv Preprint arXiv: 2308.09115. https://doi.org/10.48550/arXiv.2308.09115.
Zhang, Di, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan,
Jiatong Li, et al. 2024. “Chemllm: A chemical
large language model.” arXiv Preprint. https://doi.org/10.48550/arXiv.2402.06852.
Zhang, Jenny, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. 2025.
“Darwin Godel Machine: Open-Ended Evolution of Self-Improving
Agents.” arXiv Preprint. https://doi.org/10.48550/arXiv.2505.22954.
Zhang, Jenny, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. 2024.
“OMNI: Open-Endedness via Models of Human Notions of
Interestingness.” International Conference on Learning
Representations. https://doi.org/10.48550/arXiv.2306.01711.
Zhang, Qiang, Keyan Ding, Tianwen Lv, Xinda Wang, Qingyu Yin, Yiwen
Zhang, Jing Yu, et al. 2025. “Scientific Large Language Models: A
Survey on Biological & Chemical Domains.” ACM Computing
Surveys 57 (6): 1–38. https://doi.org/10.1145/3715318.
Zhang, Wei, Qinggong Wang, Xiangtai Kong, Jiacheng Xiong, Shengkun Ni,
Duanhua Cao, Buying Niu, et al. 2024. “Fine-Tuning Large Language
Models for Chemical Text Mining.” Chemical Science 15
(27): 10600–10611. https://doi.org/10.1039/D4SC00924J.
Zhang, Yu, Yang Han, Shuai Chen, Ruijie Yu, Xin Zhao, Xianbin Liu,
Kaipeng Zeng, et al. 2025. “Large Language Models to Accelerate
Organic Chemistry Synthesis.” Nature Machine
Intelligence. https://doi.org/10.1038/s42256-025-01066-y.
Zhao, Zihan, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Yi Xia, Bo Chen, et
al. 2024. “ChemDFM: A Large Language Foundation Model for
Chemistry.” arXiv Preprint. https://doi.org/10.48550/arXiv.2401.14818.
Zheng, Yizhen, Huan Yee Koh, Jiaxin Ju, Anh T. N. Nguyen, Lauren T. May,
Geoffrey I. Webb, and Shirui Pan. 2025. “Large language models for scientific discovery in
molecular property prediction.” Nature Machine
Intelligence 7 (3): 437–47. https://doi.org/10.1038/s42256-025-00994-z.
Zheng, Zhiling, Zhiguo He, Omar Khattab, Nakul Rampal, Matei A. Zaharia,
Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. 2024.
“Image and Data Mining in Reticular Chemistry Powered by
GPT-4V.” Digital Discovery 3 (3): 491–501. https://doi.org/10.1039/d3dd00239j.
Zheng, Zhiling, Oufan Zhang, C. Borgs, J. Chayes, and O. Yaghi. 2023.
“ChatGPT Chemistry Assistant for Text Mining and Prediction of MOF
Synthesis.” Journal of the American Chemical Society. https://doi.org/10.1021/jacs.3c05819.
Zhou, Andy, and Ron Arel. 2025. “Tempest: Autonomous Multi-Turn
Jailbreaking of Large Language Models with Tree Search.”
arXiv Preprint. https://doi.org/10.48550/arXiv.2503.10619.
Zhou, Hattie, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh
Susskind, Samy Bengio, and Preetum Nakkiran. 2023. “What
Algorithms Can Transformers Learn? A Study in Length
Generalization.” arXiv Preprint. https://doi.org/10.48550/arXiv.2310.16028.
Zhou, Yujun, Jingdong Yang, Yue Huang, Kehan Guo, Zoe Emory, Bikram
Ghosh, Amita Bedar, et al. 2024. “LabSafety
Bench: Benchmarking LLMs on Safety Issues in Scientific
Labs.” arXiv Preprint. https://doi.org/10.48550/arXiv.2410.14182.
Zhou, Zhanhui, Jie Liu, Jing Shao, Xiangyu Yue, Chao Yang, Wanli Ouyang,
and Yu Qiao. 2024. “Beyond One-Preference-Fits-All Alignment:
Multi-Objective Direct Preference Optimization.” Arxiv
Preprint. https://doi.org/10.48550/arXiv.2310.03708.
Zhu, Huaisheng, Teng Xiao, and Vasant G. Honavar. 2024.
“3M-Diffusion: Latent
Multi-Modal Diffusion for
Language-Guided Molecular
Structure Generation.” Arxiv
Preprint, October. https://doi.org/10.48550/arXiv.2403.07179.
Zhu, Kaijie, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong
Wang, Linyi Yang, et al. 2023. “PromptRobust: Towards Evaluating
the Robustness of Large Language Models on Adversarial Prompts.”
https://doi.org/10.48550/arxiv.2306.04528.
Zou, Yunheng, Austin H. Cheng, Abdulrahman Aldossary, Jiaru Bai, Shi
Xuan Leong, Jorge Arturo Campos-Gonzalez-Angulo, Changhyeok Choi, et al.
2025. “El Agente: An Autonomous Agent for Quantum
Chemistry.” Matter 8 (7): 102263. https://doi.org/10.1016/j.matt.2025.102263.
Zunger, Alex. 2019. “Beware of plausible
predictions of fantasy materials.” Nature 566
(7745): 447–49. https://doi.org/10.1038/d41586-019-00676-y.